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Abstract. Precipitation detection using infrared (IR) brightness tem-
perature (BT) temporal flux data is a challenging problem. Other sen-
sors, such as microwave (MW), have reliable and more robust predictive
performance, but lack land coverage and temporal availability. IR-BT
provides high-frequency data (from half an hour to 10 minutes) at very
low resolution (4 km). However, automatic precipitation detection frame-
works should face the simple nature of this variable on the one hand,
and the very low number of rain events occurring in nature on the other
hand. This paper addresses this challenge by proposing a conditional
GAN framework using recurrent neural networks, which transforms the
unbalanced problem into a small (short) pattern detection algorithm.
Several tests allow the identification of robust architectures and useful
loss functions that enable promising results, minimize false alarms, and
improve the overlap of positive events.

Keywords: Remote-Sensing · Precipitation Detection · cGAN · Recur-
rent Neural Networks · Invert Dice Loss

1 Introduction

This study proposes the use of machine learning models to detect precipita-
tion over land areas that are not covered by rain gauges. It aims to map a
spatio-temporal distribution of precipitation near water resources to analyze the
local climatic impact in the development of cyanobacterial harmful algal blooms
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(CyanoHABs). The vulnerability of water resources to the effects of global warm-
ing is influenced by several factors, and some of them may produce CyanoHABs
as increases in temperature, and changes in wind and rainfall patterns [19]. Both
aspects increase the frequency of blooms and can lead to CyanoHABs due to en-
hanced stratification conditions and increased nutrient loading to water sources
[3, 4]. Fig. 1 is an example of precipitation detection around Laguna Del Sauce,

Fig. 1. Precipitation detection around Laguna del Sauce, in Uruguay. Red boxes rep-
resent local places where the model detects precipitation using remote-sensing signals
based on IR and BT.

in the state of Marldonado, Uruguay, where this type of bloom is habitual in the
months of December and January. As the image shows, the rain was detected in
some places around the lake, but not in the whole region. This local information
at precise times could help to understand some variables that can trigger the
bloom.

1.1 Detecting precipitation using remote sensors

In many regions of the world, precipitation variability across spatial and tem-
poral scales cannot be fully resolved by conventional rain gauges. Geostation-
ary satellites (GEO) have large spatial coverage and real-time availability with
high spatio-temporal resolution in the order of 2-4 km and 10-30 minutes, re-
spectively. These characteristics are highly relevant for detecting and monitor-
ing the life cycle of precipitating clouds. For example, many previous studies
have demonstrated the relationship between infrared (IR) brightness tempera-
ture (BT) and precipitation by providing information on cloud top properties [2,
10, 9, 17]. Other sensors, such as microwave (MW) data, which capture the inter-
nal structure of clouds, provide a better quantitative estimate of precipitation,
but have very poor coverage and observation frequency.

Satellite quantitative precipitation estimate (SQPE) methodologies can be
classified based on how they use precipitation dynamics information. Those using
instantaneous information (or snapshots) will be referred to as static methods.
Others, namely dynamic methods, integrate available information on a time
window and explicitly consider the evolution of the precipitation system.
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Static SQPE methods are characterized by a single or a set of satellite data
corresponding to the same time, in which the objective is to integrate such
information to obtain precipitation estimation. Among them, there are most of
the products of the Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks (PERSIANN) family [10].

More current versions, such as PERSIANN-CNN [22], implements an Deep
Convolutional Neural Network (CNN), and use IR-BT and water vapor (WP)
channels. The use of CNNs improves the extraction of 2d features such as shape,
texture, and extent of precipitating clouds, aspects that ANNs cannot capture
directly.

Dynamic methods use a sequence of satellite data with temporal order, which
can be composed of one or more input variables. Among these methods, we
can name those based on optical flow, such as the Climate Prediction Center
morphing method (CMORPH) [13], Global Satellite Mapping of Precipitation
(GSMaP) [14], and IMERGE [11], which are characterized by propagating the
precipitation field estimated with MW sensors through the IR data. [25] uses
conditional GANs to integrate estimations based on IR and MW over a time
window. Recurrent neural networks (RNNs) are particularly suited for extract-
ing information and predicting patterns in sequential data such as satellite ob-
servations. In [1] they propose a PERSIAN architecture and Long Short Time
Memory (LSTM), a widely employed RNN, for estimating accumulated precip-
itation from a sequence of images over a time window.

1.2 Adversarial learning on sequential time-series

This paper combines an adversarial learning framework and recurrent network
architectures inspired by the work of Rezaei et al. [21, 20]. Their approach, called
RNN-GAN, addresses the semantic segmentation of medical images that face
a highly imbalanced data problem. The tumor segmentation system applies a
Conditional Generative Adversarial Network (cGAN) [15] architecture to two
cardiac magnetic resonance (MR) images and one abdominal computed tomog-
raphy (CT) dataset. The input stream consists of a 2D sequence of images and
slices where the tumor and lesions are manually segmented at the pixel level. In
such cases, the number of pixels representing a tumor is significantly lower than
the number of pixels representing the background. The effect of unbalanced pixel
distribution is mitigated by using complementary mask classes, some of which
may overlap.

In this work, the precipitation detection system evaluates a remote sensing
based IR-BT input signal of length L to diagnose a rainfall event. This signal is
sampled at a frequency of 30 minutes, and the detection output corresponds to
a binary stream of length L, where 1 is the value if it is raining and 0 otherwise.
Since precipitation events do not usually last more than a few hours or less, the
binary target is mostly populated with zeros even for a rainy day (see Fig. 1).

A traditional prediction model that forecasts rainfall at time t + 1 from a
signal going from 0 to t have the problem of positive collection of samples,
and the dataset can finally be highly unbalanced. On the other hand, facing
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the problem in a similar way as Rezaei et al., the proposed system trains a
conditional Generator following a sequence-2-sequence approach that estimates
the most probably rainfall output from aht IR-BT input signal. Working with
cGAN on target segments with at least one precipitation event within the stream,
changes the learning approach, correctly detecting rainfall and minimizing false
alarms.

The objective of this paper involves precipitation detection using satellite IR-
BT information streaming data using a cGAN framework and recurrent neural
networks. It proposes:

– A study of Generator and Discriminator architectures to tackle this partic-
ular problem,

– Evaluate different losses to improve regularization and convergence,
– Analyze the neighbor influence to detect precipitation.

Next section introduces materials and methods, section 3 present different
experiments and results. Conclusions and perspective are proposed at section 4.

2 Materials and methods

The Global full-resolution infrared dataset is provided by the Climate Prediction
Center (CPC)8. It merges IR-BT data between 10µ to 11µ from all available
GEO satellites (GOES-8/9/10/11/12/13/14/15/16, METEOSAT-5/7/8/9/10,
and GMS-5/MTSat-1R/2/Himawari-8) every 30 minutes with a spatial reso-
lution of 4 km [12]. Spatial coverage is between 60S-60N and 180W-180E.

Brazil’s INMET 9 provides the precipitation event targets from more than 350
automated rain gauges deployed throughout their country. The dataset consists
of hourly automated rain gauge measurements of accumulated precipitation. The
location (latitude and longitude) of each rain gauge station is used to retrieve
the corresponding IR-BT data from GEO satellites. Precipitation values are
interpolated to half-hourly measures to obtain the same length of IR-BT values.

The dataset comprises measurements collected during the years 2010 and
2011. The data set has been divided into four semesters, with the initial semester
of 2010 and the subsequent two semesters of 2011 designated for training and
validation purposes, while the second semester of 2010 has been reserved for
testing. The IR-BT and observed rainfall sequence for the years 2010 and 2011
are 8,832 and 17,520, respectively. The number of valid rain gauges for each year
is 376 for 2010 and 368 for 2011.

Fig. 2 shows an example of the rain gauge accumulated precipitation in mm/h
as the blue line and the IR-BT data in Kelvins degrees (K) at the rain gauge
site as the red line. The figure below shows a sequence binary target consisting
of the instantaneous points where the precipitation was greater than 5 mm/h.
It can be seen in the figure 2 that there is a correlation between precipitation
8 https://search.earthdata.nasa.gov/
9 https://portal.inmet.gov.br/
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Fig. 2. Examples of IR-BT at the location of the rain gauges and the accumulated
precipitation. The red line shows the IR-BT sensor data, and the blue line shows the
accumulated rainfall. In the bottom figure, we produce a binary target sequence of
those instants where precipitation was greater than 5 mm/h.

and low temperature values, but this is not a rule that can be solved with a
simple threshold. At the same time, it is clear that we face a problem where
precipitation events are rare in the input sequence. In fact, on average, 7.6% of
the points in the 2011 dataset have precipitation greater than 0 mm/h, and only
0.6% of the points have precipitation greater than 5 mm/h. In the following, we
fix Tpr = 5mm/h as the threshold for precipitation events, because this amount
of precipitation can be considered significant for the generation of CyanoHABs.

2.1 Recurrent Neural Networks and Conditional GAN framework

Recurrent Neural Networks (RNN) are a potentially accurate prediction model
for precipitation detection. RNNs are neural networks that compute current
variables based on their prior states, giving them a ”dynamic memory” [6]. This
is extremely useful for prediction within a time series, where each element fed
into the model is related to the previous and next values.

Temporal series denoted as (x(1),x(2), ...,x(T )) are usually the inputs of RNN
models. Similarly, the target sequences corresponding to precipitation detection
are given as a binary sequence (y(1),y(2), ...,y(T )), where y(t) = 1 if the accu-
mulated precipitation is greater than Tpr, and y(t) = 0 otherwise (see Fig. 2).
The predictions produced by the recurrent model are denoted as ŷ(t).
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We express the estimation of target y at time t as a dependent function R
with internal parameters θRNN :

ŷ(t), θ
(t)
RNN = R(x(t)|θRNN = θ

(t−1)
RNN ) (1)

Modern RNN architectures introduce several improvements to overcome tra-
ditional training problems. The Long-Short Term Memory model [8] (LSTM)
is one of the most successful networks, widely used in several applications such
as natural language processing. We will use LSTM in the architecture of our
precipitation diagnosis framework.

Generative adversarial networks consist of a generator G and a discriminator
D model, which are both trained simultaneously according to the two-player
min-max game with value function V (G,D):

min
G

max
D

V (G,D) = Ey∼pdata(y)[log(D(y))] +Ez∼pz(z)[log(1−D(G(z)))] (2)

D estimates whether the data is real or generated by G (fake). On the other
hand, G learns how to fool D improving the quality of the output. Formally,
D(y; θd) outputs the probability that y comes from the training data instead
of py, a generator distribution over the data y that G maps from a prior noise
distribution py(z) to the data space as G(y, θg). The framework adjusts the
parameters of D to minimize log(D(y)), the first part of eq. 2, and simultaneously
adjusts the parameters of G to minimize log(1−D(G(z))).

GANs are extended to a conditional model when G and D are conditioned
with additional data x. For G, the input noise py(z) and x are combined in a
joint hidden representation, and for D, y and x are presented as inputs to the
discriminator. The objective functions Ladv would be [15]:

min
G

max
D

V (G,D) = Ey∼pdata(y)[log(D(y|x))] +Ez∼pz(z)[log(1−D(G(z|x)))]
(3)

In our framework, the y distribution is the binary stream of the precipitation
diagnosis, and the x data is the normalized IR BT in Kelvin degrees. To nor-
malize x, we subtract the overall mean and divide it by the standard deviation
of the IR BT values. The framework is trained to approximate G(z|x) = ŷ to y.

Fig. 3 shows the cGAN framework. The generator G follows a sequence-
2-sequence framework, arranged in a deep network composed of LSTM cells,
followed by fully connected layers with a single sigmoid output. The discrimina-
tor D uses a one-dimensional convolutional neural network architecture with a
single sigmoid output.

2.2 Loss functions

In this work, we evaluate the following loss functions as regularizers to train G:

LL1 = ||ytarget − ŷ|| (4)



Remote-Sensing Based Precipitation Detection 7

Fig. 3. Proposed framework for precipitation detection cGAN.

LLdice = 1.−
2 ·
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t=1

(
y
(t)
target · ŷ(t)

)
+ ϵ∑L

t=1

(
y
(t)
target + ŷ(t)

)
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(5)

LLinvdice =

∑L
t=1

(
y
(t)
target + ŷ(t)

)
+ ϵ

2 ·
∑L

t=1

(
y
(t)
target · ŷ(t)

)
+ ϵ

− 1. (6)

were ϵ is a low value number to avoid division by zero.

Table 1. Table evaluating Dice loss functions for a target sample and ϵ = 0.1.

target
(0,0,1,1,0) description L1 loss Dice Loss Inverted Dice Loss

pr
ed

ic
ti

on
s (0,0,0,0,0) 2 fn 2 0.95 20.0

(0,0,0,1,0) 1 fn 1 0.32 0.47
(1,0,1,1,0) 1 fp 1 0.19 0.24
(1,1,1,1,0) 2 fp 2 0.32 0.48
(1,1,0,0,1) all wrong 5 0.98 50.0

LL1 refers to the ℓ1 distance and measures the deviation of G(z|y) = ŷ from
a binary output. This loss not only highlights prediction errors, but also forces
G to produce binary values close to 0 and 1, which improves the quality of the
prediction. This step is very important because this output is later evaluated by
the discriminator D.

The equations 5 and 6 describe the dice function loss and the inverse dice
loss, respectively. A dice score is usually used to measure the overlap between
distributions. Table 1 compares the results of the three loss functions on a target
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sample similar to the goal and predictions of our framework. As can be seen,
Inverse Dice (iDice) generally produces larger loss values if the prediction ŷ does
not trigger a rainfall event, which is considered a false negative (fn). It is expected
that the generator G learns to triggers a rainfall event at a very precise position
to avoid this negative reward. Empirically results showed that only using LL1

cGAN train a generator G that does not trigger rainfall events. This is because
the loss of false negatives for this score is not important. Dice and inverse Dice
losses, on the other hand, forces the generator to produce a distribution similar
to the binary target.

The final objective function Lpd−gan of the precipitation detection generator
is: Lpd−gan = Ladv + LL1 + Lxdice.

3 Experiments and Results

3.1 Evaluation scores

The evaluation of the precipitation detection task is similar to the tumor seg-
mentation in [20]. The idea is to obtain a measure of the overlap between the
ground truth and the model prediction distributions. We then define: tp, true
positives, which is the number of points correctly classified as precipitating; fn,
false negatives, the number of points incorrectly classified as non-precipitating;
and fp, false positives, those points classified as precipitating but it is not.

We propose the following scores:

F1 =
2 · precision · recall
precision+ recall

(7)

IoU =
intersection

union
(8)

where precision = tp
(tp+fp) , recall =

tp
(tp+fn) , intersection = tp, and union =

tp + fn + fp. The F1 score (Eq. 7) measures the exact overlap between the
target distribution and the prediction distribution. The IoU (Intersection over
Union) score (eq. 8) calculates the ratio of true rainfall events detected to the
total number of events triggered and the times the system should detect rainfall.
F1 and IoU range from 0 to 1, with 1 being optimal. Since precipitation events
are usually very short, the system sometimes predicts precipitation at time t±1
instead of time t. For these cases, we also define a F1 − ext score, which is
calculated as the correct detection of predictions at times t ± 1 of the correct
positive prediction.

3.2 BT-PR-dataset

To train and validate the PD-GAN framework, we set tuples (btk, prk)k=1,...,N .
Each bt

(t)
k is a sequence of IR BT, and pr

(t)
k is the corresponding sequence of

precipitation values at the same location, both of length L: t = 1, ..., L. We fix
the length of the sequences to L = 48.
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This set is populated by positive and negative tuples. The positive ones
have at least one position pr

(t)
k equal to 1. This means that the precipitation

accumulated by the rain gauge was greater than Tpr = 5 mm/h. negative
tuples have all values of pr

(t)
k equal to 0, which means that the accumulated

precipitation was less than Tpr or did not rain at all. We will refer to this dataset
as BT-PR-dataset and will use it later to train the PD-GAN framework. For
Tpr = 5 mm/h, BT-PR-dataset collects 64,755 tuples, with 27,969 positive
tuples and 36,786 negative tuples.

3.3 Naive detection

Fig. 4. Cumulative Distribution (CD) of BT for raining and non-raining events. The
green curve defines two thresholds: Tnaive−cross = 256K and Tnaive−otsu = 262K.

Naive precipitation detection classifies pixels as raining or non-raining by
applying a fixed threshold to the IR BT. From BT-PR-dataset we obtain the
distribution of those IR BT values bt(t)k that correspond to effective precipitation
pr

(t)
k = 1. We also compute the distribution of IR BT values without precipi-

tation. Both distributions are then plotted on cumulative histograms, as shown
in Fig. 4, to obtain two IR BT thresholds. The first threshold Tnaive−cross =
256K indicates the point where the two curves coincide. The other threshold
Tnaive−otsu = 262K follows the idea of the Otsu methodology [18].

Table 2 presents the result of applying this threshold to the whole 2010
dataset.

3.4 Precipitation Detection GAN

This section develops an ablation study on the different hyperparameters of the
system and different architectures. We use a 5-fold cross-validation evaluation.
The reported results are computed as the average within the folds of the perfor-
mance scores. The models were trained for up to 50 epochs with a batch size of
64. We choose the Adam optimizer with a learning rate of 2e− 4. The length L
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of the sequence of training tuples in BT-PR-training is set to L = 48, which
means a 1-day history.

As explained in sec. 2.1, the architecture of the discriminator D is fixed. It
consists of two branches of 1d CNN networks:

– br1(btk) = [1dConv(L, 32, 5), MaxPool(9), 1dConv(32, 64, 5], BN(), Max-
Pool(1), BN(), FC(64, 32)]

– br2(prk) = [1dConv(L, 32, 3), MaxPool(9), 1dConv(32, 32, 3], BN(), Max-
Pool(1), BN(), FC(32, 32)]

where 1dConv(A,B,K) is a 1d convolutional layer with input A, output B, and
1d kernel length K, MaxPool(C) is a max-pooling computed to length C, BN()
is a batch normalization layer, and FC(D,E) is a fully connected layer with input
size D and output size E. The input of br1 is the BT sequence, and the input of
br2 is the precipitation binary target. Then the outputs of both branches br1 and
br2 are concatenated and feed the output branch: ob = [FC1(64, 32), FC(32,1)].
ob has a binary output that indicates whether the input is real or fake.

Table 2 shows the results using BT-PR-dataset, where each btk is the
stream of IR BT at the location of the rain gauge that gives the target prk. In
this test, btk is a one-dimensional variable of normalized IR BT values that feeds
the training and validation framework.

Table 2. Results of naive thresholding and different PD-GAN architectures. Best re-
sults are highlited in bold.

Naive threshold F1 IoU precision recall F1-ext FAs

Tnaive−cross= 256 K 0.0750 0.0394 0.0399 0.7551 704.05
Tnaive−otsu= 262 K 0.0631 0.0328 0.0331 0.8006 899.4

Hidden Units dLoss F1 IoU precision recall F1-ext FAs

8

d

0.0088 0.0044 0.0044 0.7716 0.0188 5184.6
16 0.0362 0.0308 0.0409 0.0709 0.0667 126.6
32 0.0074 0.0037 0.0037 0.7739 0.0158 6405.9
64 0.0341 0.0238 0.0224 0.0899 0.0690 118.2

8

id

0.1299 0.0731 0.0959 0.2642 0.2213 79.1
16 0.1344 0.0755 0.0901 0.3434 0.2323 112.3
32 0.1334 0.0749 0.0902 0.3292 0.2300 105.5
64 0.1423 0.0806 0.0976 0.3405 0.2455 103.4

Table 2 compares different numbers of hidden units in the LSTM cells and
the use of Dice Loss and Inverted Dice Loss. As can be seen, the use of Dice Loss
does not provide the framework for correct learning of precipitation detection.
High values of FAs and low values of F1 show that some of the K-fold models
fall into non-optimal working states. In the former case, the generator predicts
ones most of the time, or in the latter case, the generator misses precipitation
events and often predicts zeros.
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The inverted dice loss, on the other hand, shows robust learning for the
precipitation detection framework. The best results are obtained with 64 hidden
units in the LSTM cell. However, using 8 hidden units produces a minimum
number of FAs.

F1-ext is another interesting score that shows a large increment compared
to F1. In general, using the extended target, the number of TPs doubles, while
the number of FPs decreases in the same proportion. This clearly shows that
the detection framework is sensitive to the temporal evolution of the IR BT
associated with the precipitation, but triggers the signal once after or before the
actual precipitation time.

Table 3. Results of stacked LSTM architectures using inverse dice loss.

Nr. Layers Hidden Units F1 IoU precision recall F1-ext FAs

2Lay

8 0.1395 0.0787 0.0924 0.3646 0.2427 116.4
16 0.1320 0.0740 0.0847 0.3789 0.2309 131.8
32 0.1189 0.0658 0.0748 0.3695 0.2087 144.0
64 0.1151 0.0635 0.0716 0.3705 0.2025 150.8

3Lay

8 0.1388 0.0782 0.0927 0.3577 0.2407 114.1
16 0.1373 0.0773 0.0773 0.3749 0.2387 123.4
32 0.1309 0.0737 0.0922 0.3252 0.2268 113.5
64 0.1193 0.0662 0.0769 0.3550 0.2093 138.2

We also use a stacked LSTM network [26] for the generator. In practice, an
easy way to increase the depth of the recurrent network is to stack the cells
into D layers, trying to better capture the dynamics of the time-dependent sig-
nal. This architecture has been shown to improve efficiency and performance
in problems such as vehicle-to-vehicle communication [5], regional commodity
price estimation [16], and French-English translation [23]. However, the results
in table 3 do not show a significant improvement in precipitation detection.

Next experiments increase the context of the information around the position
of interest. Instead of only using the IR-BT value at the rain gauge location, we
extract a grid from the EarthData around that point, thus the samples bt

(t)
k

became an R × R grid centered on that rain gauge location. The horizontal
resolution of these grids is 4 km, which means that a 3× 3 grid covers a field of
12 km2. Thus, the framework now has the neighborhood information that can
be used to better estimate a precipitation event, but, at the same time, we have
increased the number of parameters in the network.

Table 4 shows the results using a 1-layer architecture and two grid sizes:
3×3 and 5×5. As expected, additional information about IR-BT at neighboring
locations allows us to improve the results in both F1 and FAs for 8 hidden units
architecture.
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Fig. 5. Precipitation detection on the testing dataset 2010, 8 hidden units architecture.

Fig. 6. Precipitation detection 2010 dataset using a Tpr=1 mm/h, 16 hidden units
architecture.

Table 4 shows the results of the framework using the bidirectional LSTM [7]
in the generator, which is also used in [20]. However, the performance of this
modified LSTM cell drops in F1 and FAs scores.

The final test involves a different choice for the precipitation threshold. Using
a lower value of 1 mm/h, the new binary target represents a higher number of
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Table 4. Results using a grid region around pluviometer position.

Hidden Units R F1 IoU precision recall F1-ext FAs

8

3

0.1443 0.0828 0.1338 0.2549 0.2433 63.1
16 0.1415 0.0800 0.0988 0.3360 0.2429 97.3
32 0.1211 0.0672 0.0775 0.3531 0.2113 125.1
64 0.1214 0.0673 0.0783 0.3474 0.2123 123.5

8

5

0.1258 0.0702 0.0842 0.3410 0.2180 118.2
16 0.1141 0.0630 0.0723 0.3441 0.2010 136.5
32 0.1123 0.0618 0.0709 0.3384 0.1976 133.1
64 0.1123 0.0618 0.0697 0.3647 0.1976 143.9

Bidirectional LSTM

8

3

0.1141 0.0632 0.0786 0.2690 0.1964 91.5
16 0.1250 0.0695 0.0796 0.3770 0.2184 136.2
32 0.1166 0.0644 0.0751 0.3346 0.2023 123.2
64 0.1174 0.0650 0.0743 0.3791 0.2057 154.6

8
5

0.1202 0.0666 0.0809 0.2964 0.2088 99.1
16 0.1244 0.0695 0.0845 0.3263 0.2154 114.6
32 0.1203 0.0666 0.0752 0.3771 0.2106 139.2
64 0.1200 0.0666 0.0787 0.3221 0.2091 115.7

Table 5. Results using a precipitation threshold of 1 mm/h.

Naive threshold F1 IoU precision recall F1-ext FAs

257 K 0.2080 0.1193 0.1278 0.6687 736.5

Hidden Units F1 IoU precision recall F1-ext FAs

8 0.2036 0.1208 0.1509 0.3785 0.2862 255.4
16 0.2120 0.1267 0.1606 0.3821 0.2964 239.5
32 0.2102 0.1255 0.1548 0.3989 0.2954 264.1
64 0.2009 0.1188 0.1431 0.4200 0.2840 310.6

precipitation events. Table 5 shows the results of the cGAN framework using a
naive BT threshold. The performance shows a better F1 score compared to a
threshold of 5 mm/h, but more than twice as many FAs. This is the expected
behavior. In the training loop, the generator learns to trigger many more pre-
cipitation events, even if the BT corresponds to warm values. In this way, the
framework loses generalization power.

The figures 5 and 6 show the results of the predictions for the two best
architectures with Tpr = 5 and Tpr = 1 respectively.
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4 Conclusions

This paper develops a framework to tackle local detection of precipitation us-
ing IR-BT temporal sequence signal, a cGAN framework and recurrent neural
networks to produce the output sequence. The generator G of the cGAN is
particularly suitable for producing binary temporal sequence outputs where the
target has small (short) positive events, while it is mostly populated by zeros,
using the IR-BT as input signal.

An inverse Dice function allows correct learning in the adversarial game,
improving the performance of the traditional L1 norm applied to binary out-
puts. Considering the simple nature of the IR-BT data signal, the results are
promising and the system in its current form is ready to be incorporated into
the framework of CyanoHABs prediction and to help set social policies for water
resource management.

Further research could be directed at optimizing the forecast diagnosis by re-
gionalizing the rain gauges, using categorical precipitation with multiple thresh-
olds, or other architectures for the generator and discriminator, such as trans-
formers [24].
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