
Detecting Pedestrians on a Movement Feature Space

Pablo Negria,b,, Norberto Goussiesa,c, Pablo Lotitoa,d

aCONICET, Av. Rivadavia 1917, Buenos Aires, Argentina
bInstituto de Tecnologia, UADE, Lima 717, Buenos Aires, Argentina

cDC-UBA, Buenos Aires, Argentina
dPLADEMA-UNCPBA, Campus Universitario, Tandil, Argentina

Abstract

This work aims at detecting pedestrians in surveillance video sequences. A
pre-processing step detects motion regions on the image using a scene back-
ground model based on level lines, which generates a Movement Feature Space,
and a family of oriented histogram descriptors. A cascade of boosted classifiers
generates pedestrian hypotheses using this feature space. Then, a linear Support
Vector Machine validates the hypotheses that are likeliest to contain a person.
The combination of the three detection phases reduces false positives, preserv-
ing the majority of pedestrians. The system tests conducted in our dataset,
which contains low-resolution pedestrians, achieved a maximum performance of
25.5 % miss rate with a rate of of 10−1 false positives per image. This value
is comparable to the best detection values for this kind of images. In addition,
the processing time is between 2 and 6 fps on 640x480 pixel captures. This is
therefore a fast and reliable pedestrian detector.

Keywords: pedestrian detection, level lines, movement detection, Adaboost
cascade, linear SVM

1. Introduction

Pedestrian detection, as well as character and face recognition, vehicle de-
tection, etc., is considered a key chapter of pattern recognition in computer
vision. The various applications associated with this subject, such as surveil-
lance, safety systems, robotics, and content-based indexing, attracts the interest
of researchers and manufacturers, as well as the military and security agents.

This variety results in innumerable algorithms and methodologies that have
been recently developed [1, 2, 3]. However, a recent and thorough analysis of
the state of the art by Dollar et al [4] concludes that, for certain applications or
architectures, pedestrian detection is still an open problem, e.g. cases of low-
resolution pedestrian images. Such is the case of a person’s 3D motion model [5],
which may have between 14 and 22 degrees of freedom, showing the countless

Email address: pnegri@uade.edu.ar (Pablo Negri)

Preprint submitted to Pattern Recognition April 18, 2013

combinations of potential positions, let alone the changes in appearance due
to clothes, points of views, lighting conditions, etc. Owing to these factors,
pedestrian detection through computer vision remains a constant challenge in
the field of pattern recognition.

The various pedestrian detection applications can be classified by the type
of architecture used in the image acquisition, namely: static cameras or views
(still detection), fixed-camera video sequences, or mounted camera sequences
(e.g. robots, vehicles). Even though the nature of the images used may be
different, the methods are all consistent in finding the best descriptors adapted
to the image dataset and a classifier making it possible to find pedestrians based
on those descriptors.

In still detection, people are identified in photographic images [6, 7, 8, 9,
10, 11]. In general, a person’s position or size scale on the image is unknown.
The system thus needs to evaluate the entire image in different scales. There
are multi scale descriptors, such as the Haar-like filters [6], or the Histograms of
Orientations (HOG) [8, 9], which are then used by SVM-type classifiers in the
first case, or by cascades of boosted classifiers in the second. It is also possible
to obtain a pyramid of scales from the original image, calculating the HOG in a
fixed scale, and using a linear SVM classifier [7] or a latent SVM classifier [10].

In the case of a sequence of images taken from a fixed camera position,
temporal information is generally used. This information may be used creating
descriptors based on the video flow [12, 13, 14], which require a high frame rate
of the sequence. A background model or reference image is also used to identify
the pixels that do not belong to this model, and it is inferred that they are
part of moving objects. The primitives used may be the level lines [15, 16, 17],
Mixture of Gaussians [18, 19], or a combination of color, texture and HOG
channels [20]. Identifying the motion in the scene, assuming that pedestrians
are actually moving, makes it possible to reduce the search space for the system,
to create new descriptors, or to calculate confidence filters or maps.

Finally, the application involving on-board cameras is used in robotics for
human computer interaction, or in intelligent vehicles with pedestrian avoidance
systems to minimize accidents [21, 22, 23]. In this case, the complexity lies
in the fact that the camera is in motion, processing the dynamic flow in the
sequence which must be solved to identify pedestrians. Gravila [21] uses a
disparity map from a stereo system to get a silhouette that is subsequently
evaluated on a hierarchical tree of template shapes, using the Chamfer distance.
Dollar [11] prefers to perform a frame-by-frame analysis, without using the
motion information, and to meet the real-time requirements using a fast cascade
detector and a multi-scale calculation of gradient histograms.

The system discussed in this paper seeks to detect pedestrians in outdoor
sequences captured by a fixed remote camera. To get images with an adequate
resolution for detection, the sequence that is generally obtained is reduced to a
frame rate of 1 or 2 fps, given the limited bandwidth available. The applications
involved mainly consist of remote surveillance systems, where it is important to
detect intruders in restricted or dangerous areas, such as railroads or highways.
The detection of people allows a surveillance system to report an improper

2

(a) Afternoon view (b) Cloudy view

(c) Lateral Shadows (d) Rainy view

Figure 1: Capture samples of the recorded sequences.

presence in these dangerous areas so as to carry out appropriate actions. The
system should be robust to rapid and significant changes in the scene (e.g.
shadows, weather conditions), and to the presence of many other moving objects
(e.g. vehicles, trains, etc.), as shown on figure 1. These images, which make up
the dataset of this paper, correspond to different captures of a camera mounted
in a traffic light. Moreover, the camera view is not exactly fixed because of the
movement caused by the blowing wind or traffic vibrations.

The proposed detection system consists of four stages: motion detection,
hypothesis generation, hypothesis validation and final filtering, as shown on
figure 2(a).

In the first stage, the motion detection uses a level line based approach,
illustrated in figure 2(c), generating a Movement Feature Space (MFS). The
MFS information is grouped in order to obtain a descriptor family that we call
Histograms of Oriented Level Lines (HO2L). Then, they are used by a cascade
of boosted classifiers to generate hypotheses of the presence of a person, see
fig. 2(d), restricting the search space to some positions within the image. The
hypotheses or regions of interest (RoIs) are then validated by a linear SVM
classifier using the HO2L descriptors grouped in a configuration similar to the R-
HOG [7]. Validated RoIs, as shown on fig. 2(e), are then grouped using a Mean
Shift Clustering method [24, 25] or the Non-Maxima Suppression algorithm.
Returned bounding boxes (RoI positions) are considered the system output (see

3

MFS HO2L

PSfrag

HypothesisHypothesis
ValidationGeneration

Input
Image

Filtering and
System Output

Motion
Detection

(a) Detection Schema

(b) Original Image

10 20 30 40

(c) Motion Detection

(d) Hypothesis generation (e) Hypothesis validated (f) Final RoIs

Figure 2: Overall sequence of the detection algorithm.

figure 2(f)).
The main advantages of the system proposed in this paper include an in-

creased robustness, minimized loss of information, and computation time effi-
ciency.

We have developed MFS based on level lines to obtain an adaptive back-
ground model, preserving the orientation of the level lines, and a measure sim-
ilar to the gradient module. The MFS adapts well to slow changes in the scene
while it is robust to rapid variations (e.g. illumination changes or weather con-
ditions). In these situations, people’s appearance on the MFS does not change
significantly compared to normal conditions.

The calculation of level lines in a transformed HSV color space, called Texton
Color Space (TCS) [26], which makes it possible to retrieve color transitions that
are lost when working on gray levels, is proposed.

The orientation histograms obtained from the MFS allow for a multi-scale
pedestrian detection, avoiding the construction of a dense pyramid of sub-
sampled versions of the input image that is very costly in terms of calculation
time. They can also be computed quickly using the integral histogram, which
offers the possibility of accelerating the detection stage. The combination of

4

generative and discriminative classifiers speeds up the search for pedestrian hy-
potheses on the image, as proven in [27].

In summary, the system calculates the MFS of the sequence and continues
to work on this space without using the information from the original image
again, either the gray levels or the color channels. The desired response time
is between 2 and 6 fps in sequences of a 640x480 frame size with a miss rate of
25.5 % at 10−1 false positives per frame. This result is comparable to the best
methods of the state of the art in still detection [4].

The structure of the paper is as follows: section 2 details the methodology to
obtain the MFS, develops the hypothesis generation algorithm using the cascade
of classifiers, and details the SVM validation classifier. Various experiments and
analyses of classifiers are described in section 3. The system results and the
comparison with the state of the art are found in 4, while section 5 provides
conclusions and perspectives.

2. Algorithms and Methodology

2.1. Movement Feature Space Based on Level Lines

Motion detection in video sequences is carried out, in general, using back-
ground subtraction algorithms. They model an adaptive image reference captur-
ing the static information of the scene background. Every frame in the sequence
is compared against the model and the difference between them indicates the
presence of a new object.

The algorithm used in this paper is based on the work by Bouchafa and
Aubert [15, 16]. They propose the use of level lines as primitives for the reference
model. This methodology is also adaptive incorporating into the background
model the changes in the scene, such as new objects, shadows, modifications,
etc. In [17] they use level lines and moving region detection using the a contrario
approach to detect new objects in the scene. The processing time of this method
depends on the information within the picture, which is less adapted for use in
on-line system detection. Another method to construct the reference model in
order to detect persons is shown in the work by Mokhber et al [18]. They use
a Mixture of Gaussians [28] modeling the colors of each pixel in the reference.
However, in outdoor sequences tests, this algorithm was not robust to rapid
changes in the scene, such as strong cast shadows, passage of a cloud, or weather
variations. In these cases, the algorithm generates big binary detection regions,
where it is not possible to distinguish a moving object.

2.1.1. Definition of Level Lines

Let I be a monochromatic image with h×w pixels, where I(p) is the intensity
value at pixel p whose coordinates are (x, y). The (upper) level set Xλ of I for
level λ is the set of pixels p ∈ I, so that their intensity is greater than or equal
to λ,

Xλ = {p/I(p) ≥ λ}

5

Level Sets Level Lines

Xλ1
Cλ1

Xλ2
Cλ2

Xλ3
Cλ3

S(p) = 3
S(p) = 2

S(p) = 1

Xλ = {p/I(p) ≥ λ} Cλ boundaries of Xλ

S(p)

O(p)

λ1 > λ2 > λ3

Figure 3: Level lines extraction toy example.

For each λ, the associated level line Cλ is the boundary of the corresponding
level set Xλ [29]. Let Λ = {λ1, ..., λN}, be a set of N equally spaced thresholds
calculated from both the minimum and maximum values of I. The set Λ gen-
erates a family of N level lines C = {Cλ1

, ..., CλN
} that we use to compute two

arrays, S and O, of order h× w, defined as follows:

• S(p) is the number of level lines Cλ superimposed at p. Figure 3 shows
the value of S(p) as the addition of Cλ1

+ Cλ2
+ Cλ3

. When considering
all the gray levels (N = 255), this quantity is highly correlated with the
gradient module.

• O(p) is the gradient orientation at p, computed in the level set Xλ using
a derivative filter of 5 × 5 pixels [30]. After calculating the orientation of
all p at the boundaries of Xλ, the degree values are quantized to η integer
values. As the orientations are calculated for each Xλ of the set, the same
pixel p can have more than one orientation value. The value assigned to
O(p) is the most repeated orientation in the set.

Generally, in a practical implementation only those pixels for which S(p)
is greater than a fixed threshold δ are considered, simplifying the analysis and
preserving meaningful contours.

In Fig. 4 two different sets of equally spaced thresholds Λ1 = {λ1, ..., λN1
}

and Λ2 = {λ1, ..., λN2
}, were used with N1 = 64 and N2 = 128 in the same

capture, and δ = 1. With this value of δ, the preserved level lines of N = 128
are those for which the grayscale transition has half the values than those of the
level lines of N = 64. The great number of details (and noise) obtained in 4(e)
can be clearly noticed.

6

(a) Image Original

20 40 60

(b) St for N = 64, δ = 1 (c) St > 0 for N = 64, δ = 1

0 50 100

(d) St for N = 128, δ = 1 (e) St > 0 for N = 128, δ = 1

Figure 4: This figure shows two choices for parameter N applied on a sequence frame. N = 64
captures fewer details than N = 128.

(a) St > 0, δ = 1, N = 96 (b) St > 0, δ = 2, N = 96 (c) St > 0, δ = 3, N = 96

Figure 5: Figure showing the effect of increasing parameter δ for the same value of N .

7

In the case of Fig. 5, three values of threshold δ were applied to the same
S(p) with N = 96. Increasing δ helps to eliminate the noise in the image, thus
preserving stronger transitions. For example, for the pair (δ = 1, N = 96), the
minimal transition to create a level line having 256 gray values, is 256/N = 2.6,
while for the pair of parameters (δ = 3, N = 96), the minimal transition is
3 ∗ 256/N = 8.

2.1.2. Motion Detection

As described in [31], level lines have many properties, being invariant to con-
trast changes. This means that a regular contrast change (monotonic and upper
semicontinuous) can either create or remove level lines from a pixel, changing
the S(p) quantity, but it could never create a new level line intersecting the
original ones [16]. This is crucial because we will use level line intersections to
detect movements. This last assertion means that our method will be robust to
regular contrast variations.

Now, let two consecutive images, It−1 and It, be obtained at times t− 1 and
t.When looking for scene changes at pixel p, the variation of St(p) in comparison
with St−1 could correspond to a movement, but also to a change in contrast.
A more reliable indicator is a variation on O(p), i.e., Ot−1(p) 6= Ot(p), which
means that there is a new level line ‘crossing’ the old one. However, the number
of points verifying that condition between two consecutive images could be very
few. Bouchafa and Aubert [15, 16] define an adaptive background reference
model, composed of the set of pixels p which are stable over a period of time,
together with the corresponding values OR(p).

(a) Frame at t

(b) Reference Rt (c) Motion detection Dt

Figure 6: Motion detection at time t, showing the background model reference Rt and the
detected movement Dt.

8

More precisely, given a horizon of time T , we define array Rt as the reference
model determined by:

Rt = {p ∈ It : Ot−1(p) = Ot−2(p) = · · · = Ot−T (p)} (1)

All the pixels p satisfying this condition are preserved in array Rt which is made
up of η layers, one for each orientation value.

In practice, the equality constraints in the definition of reference space Rt

are relaxed to allow for small orientation variations due to noise or other pertur-
bations, calculating a frequency of occurrence array Ft (see [15, 16] for details).

Thus, at time t, the set of pixels p, which are not in the reference or which
have an orientation other than the reference: Ot(p) 6= OR

t (p), are inferred to
belong to moving objects. These pixels will make up the detected set Dt. Figure
6 shows an example of the reference model of the video sequence at time t. The
detected set Dt is presented in Fig. 6(c). Note that for this frame, parked cars
belong to the reference model and do not appear in Dt.

The η parameter indicating the quantization of the level line orientation
values is calculated using the 2π module. A significant number of orientations
helps to discriminate the motion level lines better than those belonging to the
reference. However, in order to be robust to the high variability in human
appearance, the colors of clothes, etc., after obtaining matrix Dt, the values of
Ot are quantized in ηd values to modulus π so as not to differentiate between a
dark-bright and a bright-dark transition(ηd = η/2).

Below, we will focus the analysis only on pixels in the detected set Dt, and
their values of St and Ot. This set can be considered as a virtual image with
two associated scalar fields, or a kind of feature space referred to as Movement

Feature Space (MFS).

2.1.3. Colored Level Lines

The color of an object in the scene is the result of the body reflection. It
depends on two characteristics related to the physical properties of the material:
the penetration of light and the scattering of the body’s pigments [32]. Clothes
are opaque bodies and reflect light in a way that interferes with the detection of
color transitions between a person and the background. This difficulty increases
when detecting small-sized objects and when the capture is converted into a gray
scale.

Fig. 7(a) shows a person wearing a red t-shirt walking in front of a green
hedge. If we transform the color image into its gray-scale representation (see
fig. 7(b)), the RGB average approaches both colors and it is impossible to find
a transition between them without generating any level lines (see Fig. 7(c)).

We thus propose to work with a transformed HSV color space, where it is
possible to recover the transition between the body (clothes) and the background
finding the level lines shown in Fig. 7(g). In this space, Hue (H) is the color
feature, Saturation (S) measures the degree of purity of the Hue, and Intensity
(V) is the average gray level. Carron [33] proposes this transformation scheme

9

(a) RGB image (b) Gray scale (c) MFSgray
level lines

(d) S · sin(H) (e) S · cos(H) (f) V (g) MFScts level
lines

Figure 7: Level lines generation using the MFSgray and MFScts spaces for the same pedestrian
example. Note that this image is the pedestrian of figure 4.

10

because color features are less sensitive to non-linear effects, being less correlated
than the RGB color space.

If Saturation has high values, the Hue is very pertinent. In contrast, when
Saturation has small values, Hue is noisy or unstable, and, consequently, it may
be irrelevant [33]. The latter means that Hue is ill-defined in unsaturated cases,
and this channel can generate irrelevant level lines [32].

To overcome this, Alvarez et al. [26] introduce a simplification of Carron’s
method referred to as Color Texton Space (CTS). In this space, two new chan-
nels are generated: S · cos(H), and S · sin(H). Intensity V remains unchanged.
Thus, in a pixel where H is not relevant because of the low value of S, those
channels do not have an important value.

First, we calculate Sx
t (p) and Ox

t (p) for each channel of the Texton Space,
where x = {SsinH, ScosH, V }. Then, in order to obtain SCTS

t (p) and OCTS
t (p),

for each pixel p, the orientation and the modulus of the greatest Sx
t (p) are

chosen. Finally, we obtain Dt from SCTS
t (p) and OCTS

t (p), as explained above.
Hereinafter, we will refer to the system obtaining the MFS from the grayscale

image as MFSgray, and to the system calculating the MFS using the Color
Texton Space as MFScts.

2.2. Generating Hypotheses on the MFS

The generation of hypotheses seeks to restrict the search space within the
image, regardless of moving objects other that people. At runtime, the MFS
generates motion information produced by pedestrians, other moving objects
(vehicles in our dataset), or different sources of noise, such as lighting changes
or camera movement. Noisy or motionless regions should be discarded quickly
in order to focus the processing on pedestrian hypotheses. The cascade of
boosted classifiers proposed by Viola & Jones [34] is perfectly suited to perform
this task. This architecture has the particularity to achieve real-time detection
with an excellent performance. Futhermore, the behavior of the cascade can
be improved by combining generative and discriminant classifiers [35, 27, 10].
Generative classification involves an a priori knowledge about the target object,
by constructing a model of the class, and finding a similarity score with this
model. Discriminant classification, on the other hand, draws a hyperplane in
the feature space and any test sample is evaluated depending on the side of the
plane where it was placed. [35, 10] generative classifiers are applied to the search
for hypotheses, which are then validated by a more complex or a discriminant
classifier. In [27], the unsupervised learning of the Adaboost cascade selects
generative classification functions in the first stages and discriminant functions
for the subsequent ones. In this paper, we suggest combining these two types
of classification functions in the cascade.

From then onwards, pedestrian hypotheses, bounding boxes, and region of
interest (RoI), refer to a rectangle within the image with a size proportional to
12x30 pixels.

11

(a) Person (b) Ot grid

0 10 20

(c) St grid

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

(d) MFSHO2L features

Figure 8: MFSHOG calculation on defined grids. In (b), each color corresponds to one of the
four directions of the level lines. In (c), darker pixels have higher St values.

2.2.1. Descriptors for the Cascade

To encode the information inside each hypothesis we will employ two kinds
of descriptors using the matrix St(p) and Ot(p) calculated by the MFS algorithm
at time t. The first one are histograms of oriented level lines (HO2L), and the
second one accumulates the values of St inside a patch. As in [34], where the set
of descriptors of a pattern of 32x32 pixels was made up of thousands of Haar-like
filters, we suggest to calculating our descriptors on a dense grid of overlapped
patches in a 12x30 pattern size (∆wp = 12,∆hp = 30).

A patch is a rectangle defined by {x, y,∆w,∆h}, where x and y are the
horizontal and vertical positions within the pattern, and ∆w and ∆h are their
size. We define three types of patches: square rs = {x, y, l, l}, vertical rectan-
gles rv = {x, y, l, 2l}, and horizontal rectangles rh = {x, 2l, l}, where l is the
rectangle side taking the values {2, 4, 6, 8}. Positions (x, y) are increased by 1
pixel, always ensuring that the patches are within the pattern. This method-
ology generates a set of 1 985 patches: 852 squares, 421 horizontal rectangles,
and 712 vertical rectangles.

The MFSHO2L descriptor j is histogram h with ηd bins, one for each ori-
entation η, which is computed as follows:

• Let rj = {xj , yj ,∆wj ,∆hj} be the patch position of descriptor j in the
pattern,

• For each bin o of h, we add all the St(p) values for p with this orientation,
h(o) = {

∑

p∈rj
St(p)/O(p) = o},

• The histogram values are normalized using L1− norm, h→ h/(‖h‖+ ǫ).

The histograms can be evaluated easily using the histogram integral by 4ηd
access to this array. Moreover, these descriptors are multi-scale: when a bound-
ing box {xBB, yBB,∆wBB,∆hBB} with ∆wBB = α ·∆wp and ∆hBB = α ·∆hp

12

is evaluated, factor α is used to compute the position and size of rj inside the
bounding box.

The example of Figure 8 shows a pedestrian bounding box of size {∆wBB =
46,∆hBB = 115}, with α = 3.83. The non-overlapped rectangular patches
illustrated were generated considering l = 3, which is converted to lBB = α ·3 =
11.5. Then the scaled size of the patches rj calculated for the bounding box are
{∆wj = 12,∆hj = 30}. For the sake of simplicity, we consider four directions
for the descriptor MFSHO2L calculated within each patch, where histogram
bin 1 corresponds to the vertical direction, bin 3 corresponds to the horizontal
direction, and the other two are the diagonal directions.

The second set of features, called MFSMAG computes the sum of the St

values inside each patch. This feature contributes to the fact that HO2L de-
scriptors cannot differentiate between a strong edge in the patch, generating a
number one in the corresponding bin, and only one pixel of noise, which creates
the same histogram after normalization.

The integral histogram is used to calculateMFSMAG, but, instead of getting
the histogram, the bins values are added before normalization.

2.2.2. Cascade Detector

The generation of hypotheses is carried out by a cascade of boosted classi-
fiers [34] discriminating pedestrian and non-pedestrian bounding boxes. Each
boosted classifier is trained using the Real Adaboost algorithm [36]. They are
called strong classifiers because they are the lineal combination of T simple clas-
sification function g ∈ ℜ known as weak functions. Let x be an input sample,
the strong classifier G(x) is defined as follows:

G(x) =

T
∑

t=1

gt(x) (2)

Input x is evaluated considering the sign of G(x), or compared to a threshold.
The cascade architecture evaluates an input x by a series of strong classifiers

Gk of increasing complexity, where complexity is associated whit the number
Tk of weak classifiers g that compose each one. If x is not validated in one of
the stages, it does not continue to the next stage and is eliminated. The first
Gk stages are made up of very few g, maybe only one, eliminating a negative
sample x quickly, while negative hypotheses similar to pedestrians (in the feature
space), are evaluated by complex classifiers with a stronger discriminant power.

This classifier has a good performance, it evaluates about 10 000 sliding win-
dows in some milliseconds and delivers to the next detection step only the most
probable pedestrian hypotheses. In addition, because of the use of the MFS,
those frames of the sequence without motion do not generate any hypotheses:
all the tested bounding boxes are eliminated in the early stages of the cascade.

As equation 2 shows, the strong classifier G(x) is the combination of classifi-
cation functions g(x) associated with descriptors calculated within the patches.
At each learning iteration of Adaboost, the different g(x) are calculated using
the learning dataset and a distribution of weights W [36]. The sign of g(x),

13

which has real values, provides the label to input x (+ 1 or - 1), while module
|g(x)| gives a value of ‘confidence’ in the prediction. Each function g(x) makes
a classification error in the learning dataset, so the one with the minimum error
is preserved in the linear combination of G(x). We propose here that these g(x)
can be of different nature: discriminant or generative.

The first classification functions presented are of a discriminant nature, com-
puted from the oriented histogram descriptors:

• g
MFSHO2L

disc

j,o (x): the input is the value of bin o in histogram MFSHO2L of
descriptor j.

Other works have used the HOG descriptor associated with a discriminant func-
tion. In [9], when the Adaboost algorithm selects one bin of the histograms in
the feature space, the others histogram bins are also incorporated into the clas-
sifier. Zhu [8], however uses the vector made up of the histograms within a
block, one for each cell, to train an SVM classifier at each Adaboost iteration.
Here, each bin of the histogram is treated individually and is incorporated into
the strong classifier without considering the other bins of the histogram. In
pedestrian detection, this classification function identifies the patches where
there is a predominant orientation in the training dataset (usually the vertical
orientation).

Unlike before, we will propose a methodology that considers the histogram
information as a whole and does not require any learning. To compute this gen-
erative classification function we create a model representing a priori knowledge
of the pedestrian class, using the HO2L descriptors.

For each feature j, a histogram model mHO2L
j is associated using the in-

formation of positive samples in the training dataset. A method to obtain the
model implies computing the median value of each bin of the descriptors j from
the positive dataset [27].

In this paper, the histogram model is obtained minimizing an error criterion.
The idea is to seek histogram hj,i of the positive sample xi that best represents
feature j in the positive dataset. The methodology involves calculating, for each
sample xi, a vector vi composed of the distance of their hj,i to the features j of
the others samples xk in the dataset: vi = [d(hj,i,hj,k)/k = 1, ..., P∩k 6= i]. The
distance between two HO2L histograms is calculated using the Bhattacharyya
distance [37]:

d(hj,i,hj,k) =
√

1− hj,i · hj,k (3)

and [·] is the scalar product. This distance, with values in the range of [0,1],
is widely used to measure the similarity among histograms, and it has a good
compromise between performance and complexity. The descriptor j minimizing
the L2 norm of the distance vector is asigned to the histogram model mHO2L

j .
The generative classification function is defined as follows:

• g
MFSHO2L

gen

j (x): where the input is the Battacharyya distance between the

descriptor MFSHO2L j of the x sample, and the model MFSHO2L asso-
ciated with j (eq. 3).

14

The descriptor MFSMAG is associated with a discriminant classification
function:

• gMFSMAG

j (x): the input is the sum of the St(x) values of the pixels inside
patch rj .

Function gMFSMAG

j (x) can eliminate those bounding boxes where no ma-
jor transitions, or motion noise were generated, e.g. camera vibrations, slight
movements of objects (trees branches blown by the wind).

2.3. Hypothesis Validation

In order to increase the precision of the system we evaluate the hypothe-
ses that are classified as positive by the cascade of boosted classifiers using
a linear Support Vector Machine (SVM). These hypotheses can contain true
pedestrian bounding boxes and false positives. The SVM classifier has to dis-
card as many non-pedestrian bounding boxes as possible while keeping the true
positives regions. This is a difficult problem since the hypotheses have already
been classified as positive regions by a previous non linear classifier. However,
the SVM has the advantage that classification is made on a higher feature space.
Different types of kernel machines can be considered: linear kernel [7, 22], poly-
nomial, RBF, or latent SVM [10], etc. An important advantage of the linear
SVM is that the classifier can be evaluated very efficiently during test time. For
this reason it is the right choice for on-line detectors.

2.3.1. Descriptors for the SVM Classifier

The input features for the SVM classifier are the HO2L descriptors grouped
in a configuration similar to that of the R-HOG descriptors proposed by Dalal
[7], which we call R-HO2L. They are computed over a dense grid of superimposed
blocks at a single scale of ς×ς cells of size ρ×ρ discretizing the gradient directions

in η bins. The blocks are normalized using the L2-Norm: v → v/
√

‖v‖
2
2 + ǫ.

The pattern for the SVM descriptors have 24x60 pixels size, which is the mini-
mum size of the pedestrians in our dataset.

2.3.2. SVM Classifier

Hypotheses are validated by a hyperplane learning algorithm referred to as
Support Vector Machine (SVM) [38]. For linearly separable problems, among
all the hyperplanes separating the training data on the feature space (person
versus non-person classes), there will be a single optimal hyperplane maximizing
the separation margin, as shown on Fig. 9 [39]. Let {xi, yi} be a training
dataset, where yi ∈ {−1,+1}, xi ∈ ℜ

d. Thus, the classification of sample {xi is
formulated as:

yi(xi ·w+ b)− 1 ≥ 0 (4)

where w is the normal to the hyperplane. The points at which equation 4 holds
are called support vectors and define two parallel planes (the dotted lines in
Figure 9) on both sides of the hyperplane separated by margin 2/||w||. The

15

margin

w

Figure 9: Hyperplane for a linearly separable problem. The dotted lines represent the margin
defined by the three support vectors: two O’s and one filled point.

proposed optimization problem seeks to find the pair of hyperplanes that max-
imize the margin, while minimizing ||w||, subject to equation 4 ∀i.

The Lagrangian formulation introduces the Lagrange multipliers αi, one for
each learning sample. There is a single solution which has αi 6= 0 only for the
support vectors, and which defines the hyperplane below:

w =

Ns
∑

i=1

αiyixi (5)

When the problem is not linearly separable (our problem), the restrictions
change to allow for the possibility of mis-classified samples. To solve this new
optimization problem, slack variables and new constrains are introduced in order
to find a soft margin classifier. In this case, the solution of equation 5 holds,
with the difference that it adds a new constraint giving αi an upper bound C.

After the SVM training, w is calculated from equation 5, and stored. This
vector will always have the same dimension d, regardless of the number of sup-
port vectors that define it. The dot product of input vector sample x and w

is sufficient to evaluate it. That is why the linear SVM is chosen for on-line
detectors, over other nonlinear SVM classifiers. The latter, using polynomial
kernels, RBF, etc., have to evaluate the input sample with each support vector,
which improves the performance, but increases the computation time.

The linear SVM training was carried out by the OpenCV implementation
[40], using a two round bootstrapping approach [10].

16

3. Experiments

3.1. Datasets

Video sequences were recorded using a Vivotek SD7151 camera, filming an
intersection in the city of Tandil (Argentina). The recording format is MJPEG
with a 640x480 pixels size. We have chosen the minimum JPEG compression
to reduce blocking artifacts in captures. In addition, a bilinear interpolation is
applied to input frames: on each HSV channel and on the gray scale image. With
this JPEG resolution, the limited network bandwidth reduces the recording
process to one capture every three seconds, on average.

The dataset is made up of seven video sequences. Five of them are used to
train the classifiers, having 1 110 labeled pedestrian in more than 5 000 frames.
In the test sequence, there are 1 357 labeled pedestrians in 4 200 frames.

Pedestrians circulate at a distance between 30 and 60 meters from the cam-
era. Their average height in the image is 65 pixels, representing a dataset with a
very low resolution. Moreover, 45 % of the pedestrians are partially occluded by
other pedestrians, and out of them, 8.6 % are highly occluded by an overlapping
factor of 0.4.

In the cascade of boosted classifiers learning phase, each classifier is trained
using a dataset consisting of 4 500 negative samples randomly picked from the
sequences, and 6 600 positive samples. The positive dataset is obtained using
the sliding window approach on the training sequences, similarly to the approach
used for testing, to retrieve 3 300 positive bounding boxes which have a high
overlapping ratio (over 0.85) on the 1 110 ground true training samples. Taking
their left-right reflections, we double the positive number.

The SVM classifier training phase uses 2 220 positive samples (ground true
bounding boxes and their reflections) and more than 12k negative samples ran-
domly picked from training sequences and negative images from the INRIA
Person dataset, in the first round of the bootstrapping learning. In the second
round of the bootstrapping, the negative set is made up of the mis-classified
samples from the first negative set and incremented by the false positives found
by the first classifier on the training sequences and the INRIA negative images.

3.2. Evaluation of Results

The system response is a set of bounding boxesB = {Bd(1), Bd(2), ..., Bd(i)},
and their associated classification score si. To evaluate the performance, this set
is compared against the pedestrian real bounding boxes Bgt, referred as ground-
true. The overlapping criterion is the same as that proposed in Challenge Pascal
[41]. If a bounding box Bd exceeds the overlap factor over Bgt, it is considered
to be as a correct detection, or otherwise a false positive. If there is more than
one bounding box overlapping the same Bgt, only Bd remains with the highest
overlapping criterion, and the others are considered to be false positives.

Score si associated to Bd(i) is computed using equation 4, as the scalar
product between the feature vector xi of Bd(i) and the linear SVM wlinSV M ,
plus factor b:

17

si = xi ·wlinSV M + b (6)

To compare the performance of different versions of the classifier, we will
use the False Positive Per Image (FPPI) rate, which is better adapted to the
sliding windows testing approach than the Detection Error Tradeoff (DET) [4].

The set of bounding boxes B consists of those Bd(i) with a score si > 0, on
the positive hyperplane side. To draw the FPPI curve, thresholds of increasing
values will be applied to set B. Each threshold value generates a point in the
FPPI curve.

Validated bounding boxes are filtered by the non-maxima suppresion algo-
rithm (NMS) [10]. The overall miss rate and false positive rate of the test
sequences are obtained from the resulting bounding boxes.

The choice value to compare the miss rate of the classifiers correspond to a
FPPI of 10−1, instead of the log-average miss rate. From [4], the log-average

is computed as the average of nine evenly spaced FPPI rates in the range of
10−2 to 100. In our system, almost all curves end before this maximum value.
However, as claimed by Dollar, the miss rate at 10−1 FPPI and the log-average

miss rate yield similar results.

3.3. Parameter Selection

In this section different parameters will be evaluated, especially those affect-
ing the hypothesis validation stage (linear SVM classifier). For our system, the
latter is critical and must have the best performance possible: a lower miss rate
with fewer false alarms. The influence of these parameters on motion detec-
tion and hypothesis generation stages does not affect the system performance
significantly. The curve results are the average of 5 fold independent trained
classifiers.

3.3.1. Parameters of Level Lines

Figure 10 evaluates the performance of classifiers varying parameter N of
the level lines, which corresponds to the number of thresholds in the set Λ =
{λ1, ..., λN}. Figure 10(a) shows the results. For the MFSgray space, the miss
rate of N = 80 is 30.7 % at 10−1 FPPI. Decreasing the number of thresholds
to N = 48 increases the miss rate in 2 %. For the space MFScts, where there
are more available information, the effect is the opposite, changing from a miss
rate of 46.1 % with N = 80 to 43.5 % with N = 48.

Figure 10(b) shows the FPPI effect of the quantization parameter ηd of level
line orientation. The best performance is obtained using a value of ηd = 4 bins
for the MFSgray space. When ηd = 6, performance drops by 1 %, thus showing
that there is no significant difference between performances. However, when
choosing a higher number of orientations, ηd = 9, performance decreases by 9
%. For MFScts, a performance with ηd = 6 is optimum.

Another important parameter in level line encoding is the value of δ, which
was the threshold applied to obtain relevant level lines. Figure 11 shows the

18

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.5

0.8

1

MFSgray, N=48
MFSgray, N=80
MFScts, N=48
MFScts, N=80

FPPI

m
is
s
r
a
t
e

(a) FPPI effect of N , using delta=1 and ηd=4

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.5

0.8

1

MFSgray, η
d
=4

MFSgray, η
d
=6

MFSgray, η
d
=9

MFScts, η
d
=4

MFScts, η
d
=6

MFScts, η
d
=9

FPPI

m
is
s

r
a
t
e

(b) FPPI effect of the number of orientation
bins ηd, using delta=1 and N=80 for MFSgray,
and delta=1 and N=48 for MFScts.

Figure 10: FPPI performance of the SVM classifiers with different parameters.

1

2

3

4

48

64

80

96

0

0.2

0.4

0.6

0.8

δ
N

m
is
s
r
a
t
e

(a) Gray Level Lines

1

2

3

4

48

64

80

96

0

0.2

0.4

0.6

0.8

δ
N

m
is
s

r
a
t
e

(b) CTS Level Lines

Figure 11: FPPI effect of N and δ.

miss rate values at FPPI 10−1 for different combinations of N and δ, since these
two parameters are closely related.

The optimal value for MFSgray is N = 80, with δ = 1 and a miss rate of
30.7 %. For the MFScts space, the value of N = 48 with δ = 2 minimizes the
error to 42.3 %.

3.3.2. R-HO2L Encoding Parameters

In this work, the block has ς×ς cells, with ς = 2, as the size of our pattern
is smaller than the one used by Dalal [7]. Figure 12 shows the performance of
different cell sizes with ρ×ρ pixels tested. The size ρ = 3, where the vector
dimension is d = 2 128 with ηd = 4, has a better performance in the MFScts
space with a miss rate of 42.3 %. By switching to ρ = 4, where the feature vector
dimension is d = 1 120, performance drops by 1 %. For the MFSgray space, the
performance for ρ = 3 is 3 % better than for ρ = 4. These results prove that

19

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.5

0.8

1

MFSgray, ρ=3

MFSgray, ρ=4

MFScts, ρ=3

MFScts, ρ=4

FPPI

m
is
s
r
a
t
e

Figure 12: The figure shows the FPPI effect of varying the size of the R-HO2L cells, with
values N = 80 and δ = 1 for MFSgray, and N = 48 and δ = 2 for MFScts.

the smaller size of ρ represents a finer coding of the sample and improves the
performance.

3.3.3. Increasing the Training Positive Dataset

10
−3

10
−2

10
−1

10
0

10
1

0.01

0.05

0.1

0.2

0.3

0.5

0.8
1

MFSgray, PB
MFSgray, PB+INRIA
MFScts, PB
MFScts, PB+INRIA

FPPI

m
is
s
r
a
t
e

Figure 13: FPPI effect of the number of positives in the training. PB means the original
positive sample base from the street sequence, and BP+INRIA means that the INRIA positive
samples were added for training.

Figure 13 shows classifiers that were trained by adding 2 417 cropped positive
examples of training available from the INRIA Person dataset. Although, in
general, the system performance should improve when adding positive samples

20

during the training [2], results are not better due to the fact that the descriptors
of these samples are not calculated in a movement space (they are still photos).
In addition, the classifier does not appropriately generalize the pedestrian class,
and the performance is decreased by 12 % for both spaces.

3.4. Processing Time

This section discusses the processing time of the various steps in the detection
execution, using an Intel Core processor i5 @ 2.67 Ghz.

First, we assess the computation time to obtain the MFS in table 1. As
developed in section 2.1 level lines are calculated in a loop of N iterations. A
threshold is applied at each iteration to get the level sets and, subsequently, their
level lines. The greater N is, the more iterations are needed, thus increasing
the processing time. Appendix B proposes a fast approximate calculation of the
level lines using a series of filters, being independent of N .

The processing time also depends on the number of orientations of level
lines η. As we stated in section 2.1.2, the MFS reference Rt is an array having
η layers. Increasing η implies that more layers make up array Rt, then more
processing time is required to compare the novelties (motion).

η
MFSgray MFScts

Iterative MFS Fast MFS Iterative MFS Fast MFS
4 489 133 708 247
6 523 173 753 295

Table 1: MFS Processing time in milliseconds.

After calculating the MFS, Ot andDt arrays are used to obtain the histogram
integral. This processing also depends on η: 10 msecs @ ηd = 4 and 15 msecs
@ ηd = 6.

Table 2 details the average processing times for two cases: frames with a
single pedestrian, and a frame with 11 pedestrians in the view, representing
the longest processing time in detection. In the case of frames with very few
pedestrians there is no difference in the processing time of the cascade operation.
However, when the number of pedestrians is significant, the number of validated
hypotheses is very high and they are all evaluated between stages 20 and 30 of
the cascade, thus considerably increasing the processing time.

The validation stage, yields an important difference between both cases, and
different values of ηd. An SVM linear classifier is calculated faster with fewer
orientations.

Detection task
1 pedestrian 11 pedestrians

η = 4 η = 6 η = 4 η = 6
20 stg 30 stg 20 stg 30 stg 20 stg 30 stg 20 stg 30 stg

HYp. generation 16 20 31 41 125 170 187 320
HYp. validation 14 14 50 85

Table 2: Executing time of the detection in milliseconds.

21

Table 3 shows the accumulated processing times for both examples. When
there is no motion in the scene, the pre-processing speed is fixed in the MFS
calculation, and the histogram integral. In that case, the cascade evaluates
the image in less than 10 milliseconds, meaning that the total time is about
154 milliseconds (Fast MFSgray and ηd = 4). The global processing system
IS between 2 and 6 fps for sequences of 640 x 480 pixels, depending on the
content of the frame, the number of orientations and the number of stages in
the cascade.

Space
1 pedestrian 11 pedestrians
η = 4 η = 6 η = 4 η = 6

MFSgray 175 218 315 433
MFScts 289 340 429 560

Table 3: Overall processing time for each case in milliseconds.

4. System Results

4.1. Cascade Analysis

Figure 14 shows the average values of cascade components for three inde-
pendent trained cascades using the MFSgray space. Fig. 14(a) describes the
number of weak functions g at each stage of the cascade. The early stages
consists of very few classification functions, and the last stages have a bigger
number. The type of features at each stage of the cascade is shown on Fig.
14(b). Until stage four, almost all the classification functions are generative.
Discriminant functions increase in number to reach 40-60 % of the total g func-
tions from stage 10. They were chosen by the Adaboost algorithm to better
discriminate pedestrian classes with harder negative samples.

Figure 15 analyzes the behavior of the cascade, discriminating frames with-
out motion, with moving objects other than pedestrians, and frames with pedes-
trians. In the sliding windows approach, the total number of evaluated bounding
boxes for each capture in the test sequences is around 10 000. The curves in Fig.
15 show the ratio of the bounding boxes validated by the stage of the cascade on
the MFSgray space. When there are no moving objects, the validated bounding
boxes with information caused by either noise or camera movements, are totally
eliminated at stage 3. In the case of frames without pedestrians, but with other
moving objects (vehicles), the ratio of validated bounding boxes is one order
below that of the images with pedestrians. These fewer bounding boxes will be
eliminated by the HV step. Note that there is no difference in the validated
bounding boxes between the 20th and the 30th stages.

Figure 16 shows the first two stages of the boosted cascade. Both stages
have only one generative classification function MFSHO2L

gen . Both histograms
obtained within the patch associated with the feature and histogram model for
calculating the classification function can be seen in the figure. As an exam-
ple, based on input x corresponding to the pedestrian’s case, we calculate the

22

0 5 10 15 20 25 30
0

5

10

15

20

25

N
u
m

b
e
r

o
f
w
e
a
k

c
la

s
s
if
ie

r
s

Stage

(a) Number of weak classifiers per stage

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MFS
gene
HO2L

MFS
disc
HO2L

MFSMAG

P
r
o
p
o
r
t
io

n
o
f
g

t
y
p
e

Stage

(b) Proportion of the classification function
type on each stage

Figure 14: Description of each stage in the cascade.

Bhattacharyya distances, allowing us to obtain the value of the classification
function that is compared to the thresholds of the stage:

1. Stg G1(x)

• compute the histogram within the path of feature 1946, h1946,

• compute the Bhattacharyya distance with the model of feature 1946:
d(h1946(x),m1946) = 0.079679,

• get the strong classifier output:
G1(x) = g1(d) = 0.65611,

• compare G1 with the stage threshold TH1:
G1(x) > TH1 = −0.0459, and validate the sample to be evaluated
for the second stage of the cascade.

2. Stg G2(x),

• compute the histogram within the path of feature 1351, h1351,

23

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Stage

R
at

io
 o

f v
al

id
at

ed
 B

ou
nd

in
g

B
ox

es
 (

lo
g)

Frames w/pedestrians & vehicles
Frames w/vehicles, no pedestrians
Frames without movement

Figure 15: Bounding box validation at each stage of the cascade.

r
1946

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

m
1946

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

h
1946

0 0.5 1
−1

−0.5

0

0.5

1

g
1

(a) First Stage: G1

r
1351

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

m
1351

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

h
1351

0 0.5 1
−1

−0.5

0

0.5

1

g
1

(b) Second Stage: G2

Figure 16: First two stages of the cascade of classifiers and the histogram features calculated
in a pedestrian example.

• compute the Bhattacharyya distance with the model of feature 1351:
d(h1351(x),m1351) = 0.12889,

• get the strong classifier output:

24

G2(x) = g1(d) = 0.2879,

• compare G2 with the stage threshold TH2:
G2(x) > TH2 = −0.19159, and validate the sample to be evaluated
for the third stage of the cascade.

In the example, both strong classifier outputs Gk(x) were larger than the
corresponding threshold THk. Then, the bounding box is delivered to the sub-
sequent stages in the cascade.

4.2. Cascade Results

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.5

0.8

1

MFSgray SVM
MFSgray SVM+20Ada
MFSgray SVM+30Ada

FPPI

m
is
s
r
a
t
e

(a) MFSgray

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.5

0.8

1

MFScts SVM
MFScts SVM+20Ada
MFScts SVM+30Ada

FPPI

m
is
s
r
a
t
e

(b) MFStcs

Figure 17: FPPI performance of the overall system.

Figure 17 shows the FPPI system performance comparing detection without
HG step (only applying the SVM classifier), and the performance of the system
using two Adaboost cascades with different numbers of stages. The combination
of the cascade and the SVM classifier (HG+HV) improves the behavior of the
system, eliminating a greater number of non pedestrian bounding boxes. This
can be seen in a translation of the curve to the left, minimizing false positives.
A less desired effect of the hypothesis generation occurs when pedestrians are
not detected by the cascade. In the case of MFSgray space, no pedestrians are
missed at this point. On the other hand, for MFScts space, the HG misses 6 %
of positives.

For MFSgray, the performance of the HG+HV system has a miss rate of
25.5 % at 10−1 FPPI for the Adaboost with 30 stages, and a miss rate of
25.8 % for the cascade with 20 stages. Using the HG as a previous step in
the detection system improves the performance by 8 %. That means that the
Adaboost cascade, as it is a non-linear classifier, provides an important number
of hypotheses, while eliminating some negatives that the linear SVM classifier
would validate. As shown on Fig. 1, the negative hypotheses are handled by
the linear SVM in a higher classification space, thus increasing the probability
to eliminate them.

25

In the case of MFScts space, the lower miss rate of 30.2 % is obtained
by the HG+HV combination, using a cascade of 30 stages. The improvement
of the proposed system accounts for 12 % in the miss rate, compared to the
performance of MFScts without the HG step.

The results obtained are comparable with the best performances achieved
by Dollar [4], using datasets with higher resolution. This paper presents the
performances using the log-average, but as the authors claimed in their work,
those values are comparable with the miss rate at 10−1 FPPI.

4.3. Overall Results and Benchmarking

The results of the system were compared with two methods of the literature
working on still images. First, a linear SVM classifier was trained using the
Dalal R-HOG features space. The second methodology is the one proposed by
Felzenszwalb [10]. These experiments were conducted using the implementation
of OpenCV library [40] for the former, and [42] using the same training dataset
as our system for the latter.

The implementation results of the latent SVM are expressed in a Precision-
Recall (PR) curve calculated from the set of resulting bounding boxes. The
number of correct detections is 1 071 with 4 545 false alarms after the NMS
filtering. This value accounts for a false positive per image of 1.06. Since it
is not possible to plot the FPPI curve, we take this FPPI point and find the
corresponding threshold from the curves of Fig. 17 that allows us to generate
the PR curve. If the FPPI curve does not reach a false positive value of 1.06,
the threshold generated by the rightmost point of the curve is used. After
calculating the PR curve, we can also obtain the average precision value (AP),
widely used to compare the performance of detectors.

Figure 18 displays the results in the PR curve of the literature methodologies,
and the different classifiers and architectures of our system. The curves with
the ‘ADA’ prefix show the results of the system with the hypothesis generation
and the hypothesis validation steps.

The latent SVM obtains an AP of 62.2 %, showing a better peformance than
Dalals classifiers, which have an AP of 60.8 %. The PR curves of our system
have AP values higher than 60 % in most cases. Better performance results are
achieved by the ADAMFSgray space (AP=70.4%), and the ADAMFScts spce
(AP=68.6%), the former in precision and the latter in recall. As can be seen in
the ADAMFScts vs MFScts curves, HG+HV improves the AP values by 10 %
and precision up to 20 % for recall values higher than 0.5.

Finally, the systems using the fast calculation of MFS, with the ‘Fast’ pre-
fix, yields results comparable with the normal calculation of level lines, while
reaching detection rates between 2 and 6 fps.

5. Conclusions and future work

This paper proposes a pedestrian detection system using video sequences
taken from a video surveillance-type fixed camera filming outdoors. Such images

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

latentSVM (0.62387)
Dalal (0.60859)
MFSgray (0.66282)
MFScts (0.62098)
ADAMFSgray (0.70467)
ADAMFScts (0.68604)
FastADAMFSgray (0.66221)
FastADAMFScts (0.71167)

p
r
e
c
is
io

n

recall

Figure 18: Overall results and benchmarking.

are considered to be significantly complex, as they suffer severe changes in the
scene appearance due to weather conditions, rapid changes in lighting, etc.,
added to the presence of many other moving objects. The system architecture
presented consists of a series of stages that first detect movement in the scene,
and then check whether the moving object is a pedestrian.

The movement is extracted through a background model methodology based
on level lines, which are robust to severe lighting changes, such as those occur-
ring in outdoor images. In addition to the calculation of the level lines in the
monochrome image, the use of a color space referred to as Color Texton Space
was suggested. This makes it possible to retrieve the color transitions that dis-
appear when the image is converted from the color space to a gray scale. This
phase generates the Movement Feature Space (MFS) that will be used by the
other stages of the system.

The descriptors generated by the MFS are histograms of oriented level lines
(HO2L), encoding level lines orientations and a value similar to the gradient
module. This kind of descriptors can be calculated at multiple scales and very
quickly through an integral histogram. By means of this pre-preprocessing, and
using a cascade of boosted classifiers, the regions with motion in the scene are
quickly extracted. The cascade can combine generative classification functions
with discriminant functions, accelerating this process. Those image regions with
motion and an appearance similar to pedestrians are validated by a linear SVM
classifier, and discriminated from other moving objects in the scene, such as
cars. SVM classifiers use HO2L descriptors with a configuration similar to the
R-HOG.

Using the best combination of the coding parameters of the level lines and

27

the oriented histograms, the system achieved a maximum performance of 25.9
% miss rate with a rate of 10−1 false positives per image. The system can
operate between 2 and 6 fps, making it a robust and reliable choice for use in
real video surveillance applications seeking, for example, the improper presence
of pedestrians in forbidden places.

In this paper we have compared the MFS based system with two state of the
art methodologies: the linear SVM proposed by Dalal et al [7], and the latent
SVM of Felzenszwalb et al [10], trained with our base. Our system yielded sim-
ilar or better results than these algorithms when applied to our test sequences.

As a perspectives, an analysis of tracking methodologies is being conducted
on sequences with sufficient frame rate using the MFS, as well as a combination
of pedestrian generative models and tracking algorithms. The combination of
these methods would provide a more robust response to the detection and iden-
tification of people in the scene, in order to analyze their behavior along the
sequence.

6. Acknowledgments

This work was supported by PICT-2283 of ANPCyT, ACyT R11020 of
UADE and CONICET (Argentina).

References

[1] T. Moeslund, A. Hilton, V. Krüger, A survey of advances in vision-based
human motion capture and analysis, Journal on Computer Vision and Im-
age Understanding 104 (2) (2006) 90–126.

[2] M. Enzweiler, D. M. Gavrila, Monocular pedestrian detection: Survey and
experiments, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 31 (12) (2009) 2179–2195.

[3] D. Geronimo, A. L. Lopez, A. D. Sappa, T. Graf, Survey of pedestrian
detection for advanced driver assistance systems, IEEE Transactions on
Pattern Analysis and Machine Intelligence 32 (7) (2010) 1239–1258.

[4] P. Dollr, C. Wojek, B. Schiele, P. Perona, Pedestrian detection: An evalu-
ation of the state of the art, IEEE Transactions on Pattern Analysis and
Machine Intelligence 34 (4) (2012) 743–761.

[5] J. K. Aggarwal, Q. Cai, Human motion analysis: A review, Computer
Vision and Image Understanding 73 (3) (1999) 428–440.

[6] C. Papageorgiou, T. Poggio, A trainable system for object detection, In-
ternational Journal on Computer Vision 38 (1) (2000) 15–33.

[7] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: IEEE Computer Vision and Pattern Recognition, Vol. 1, 2005, pp.
886–893.

28

[8] Q. Zhu, S. Avidan, M. Yeh, K. Cheng, Fast human detection using a cascade
of histograms of oriented gradients, in: IEEE Conference on Computer
Vision and Pattern Recognition, Vol. 2, 2006, pp. 1491–1498.

[9] J. Begard, N. Allezard, P. Sayd, Real-time humans detection in urban
scenes, in: Proceedings of the British Machine Vision Conference, 2007,
pp. 21.1–21.10.

[10] P. Felzenszwalb, G. Girshick, D. McAllester, D. Ramanan, Object detection
with discriminatively trained part-based models, IEEE Pattern Analysis
and Machine Intelligence 32 (9) (2010) 1627–1645.

[11] P. Dollr, S. Belongie, P. Perona, The fastest pedestrian detector in the west,
in: British Machine Vision Conference, 2010, pp. 1–11.

[12] P. Viola, M. Jones, D. Snow, Detecting pedestrians using patterns of motion
and appearance, in: IEEE International Conference on Computer Vision,
Vol. 2, 2003, pp. 734–741.

[13] N. Dalal, B. Triggs, S. Schmid, Human detection using oriented histograms
of flow and appearance, in: European Conference on Computer Vision, Vol.
Part II, 2006, pp. 428–441.

[14] S. Walk, N. Majer, K. Schindler, S. B., New features and insights for pedes-
trian detection, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2010, pp. 1030–1037.

[15] S. Bouchafa, Motion detection invariant to contrast changes. application to
detection abnormal motion in subway corridors, Ph.D. thesis, UPMC Paris
VI (1998).

[16] D. Aubert, F. Guichard, S. Bouchafa, Time-scale change detection ap-
plied to real-time abnormal stationarity monitoring, Real-Time Imaging
10 (2004) 9–22.

[17] T. Veit, F. Cao, P. Bouthemy, An a contrario decision framework for region-
based motion detection, International Journal on Computer Vision 68 (2)
(2006) 163–178.

[18] A. Mokhber, C. Achard, M. Milgram, Recognition of human behavior by
space-time silhouette characterization, Pattern Recognition Letters 29 (1)
(2008) 81–89.

[19] S. Stalder, H. Grabner, L. Gool, Cascaded confidence filtering for improved
tracking-by-detection, in: European Conference on Computer Vision, 2010,
pp. 369–382.

[20] A. Descamps, C. Carincotte, B. Gosselin, Person detection for indoor video-
surveillance using spatio-temporal integral features, in: Interactive Human
Behavior Analysis in Open or Public Spaces Workshop, 2011, pp. 110–118.

29

[21] D. Gravila, S. Munder, Multi-cue pedestrian detection and tracking from
a moving vehicle, International Journal on Computer Vision 73 (1) (2007)
41–59.

[22] M. Bertozzi, A. Broggi, M. D. Rose, M. Felisa, A. Rakotomamonjy,
F. Suard, A pedestrian detector using histograms of oriented gradients and
a support vector machine classifier, in: Intelligent Transportation Systems
Conference, 2007, pp. 143–148.

[23] A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri, H. G. Jung, A new approach to
urban pedestrian detection for automatic braking, IEEE Intelligent Trans-
portation Systems Conference 10 (4) (2009) 594–605.

[24] D. Comaniciu, Mean shift: A robust approach toward feature space analy-
sis, IEEE Transactions on pattern analysis and machine intelligence 24 (5)
(2002) 603–619.

[25] B. Finkston, accessed on march 2012. [link].
URL http://www.mathworks.com/matlabcentral/fileexchange/

10161-mean-shift-clustering

[26] S. Alvarez, A. Salvatella, M. Vanrell, X. Otazu, 3d texton spaces for color-
texture retrieval, in: Image Analysis and Recognition, 2010, pp. 354–363.

[27] P. Negri, X. Clady, S. Hanif, L. Prevost, A cascade of boosted generative
and discriminative classifiers for vehicle detection, EURASIP JASP 2008
(2008) 1–12.

[28] C. Stauffer, W. Grimson, Adaptive background mixture models for real-
time tracking, in: IEEE Conference on Computer Vision and Pattern
Recognition, Vol. 2, 1999.

[29] V. Caselles, l. B. Col, J. Morel, Topographic maps and local contrast
changes in natural images, International Journal on Computer Vision 33
(1999) 5–27.

[30] B. Jahne, H. Haussecker, P. Geissler (Eds.), Handbook of Computer Vision
and Applications, Vol. 2, Academic Press, 1999.

[31] F. Cao, P. Musse, F. Sur, Extracting meaningful curves from images, Jour-
nal of Mathematical Imaging and Vision 22 (2005) 1519–181.

[32] M. Gouiffes, B. Zavidovique, A color topographic map based on the dichro-
matic reflectance model, EURASIP JIVP 2008 (2008) 1–14.

[33] T. Carron, P. Lambert, Color edge detector using jointly hue, saturation,
and intensity, in: IEEE International Conference onf Image Processing,
Vol. 3, 1994, pp. 977–981.

30

[34] P. Viola, M. Jones, Rapid object detection using a boosted cascade of
simple features, in: IEEE Converference on Computer Vision and Pattern
Recognition, Vol. 1, 2001, pp. 511–518.

[35] M. Enzweiler, D. M. Gavrila, A mixed generative-discriminative framework
for pedestrian classification, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2008, pp. 1–8.

[36] R. Schapire, Y. Singer, Improved boosting algorithms using confidence-
rated predictions, Machine Learning 37 (3) (1999) 297–336.

[37] T. Kailath, The divergence and bhattacharyya distance measures in signal
selection, IEEE Transactions on Communications 15 (1) (1967) 52–60.

[38] V. Vapnik, The nature of Statistical Learning Theory, Springer, 1995.

[39] B. Schölkopf, A. Smola, Learning with Kernels. Suppor Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA,
2002.

[40] Ver. 2.4.2 (available on december 2012). [link].
URL http://opencv.willowgarage.com/wiki

[41] M. Everingham, L. Gool, C. K. Williams, J. Winn, A. Zisserman, The pas-
cal visual object classes (voc) challenge, International Journal on Computer
Vision 8 (2) (2010) 303–338.

[42] Felzenszwalb, ver. 5 (available on december 2012). [link].
URL http://people.cs.uchicago.edu/~rbg/latent/

31

Appendix A. Cascade learning algorithm

Algorithm 1 shows the strong classifier learning using Real Adaboost al-
gorithm [36]. The algorithm input are the positive dataset PB, the negative
dataset NB, and a parameter T indicating the number of weak functions to
incorporate to G(x).

Algorithm 1 Adaboost strong classifier training: ADATRAIN(PB,NB,T)

Require: Set of labeled samples (x1, y1), ..., (xN , yN) ,
with xi ∈ PB ∪NB and yi ∈ {−1,+1},

Ensure: Weight distribution Wi = 1/N ,
1: for t = 1, ..., T do

2: for all n = {MFSHO2L
gen ,MFSHO2L

disc ,MFSMAG} do
3: Train weak learner gnt using Wt,
4: Get minimum error ent
5: gt = gmt / m = argmin(ent),
6: Update:

Wt+1(i) =
Wt(i) · e

−yigt(xi)

Zt

where Zt is a normalization factor.
7: return G(x) =

∑T

t=1 gt(x)

At each algorithm iteration, the classification functions are computed from
the training dataset and the weight distribution W . Between al the gnt avail-
ables, it is selected the one who gets the minimun error classifying the training
dataset. This gmt is added to the linear combination of G. This process is
repeated until G(x) has T weak classification functions.

The algorithm 2 shows the methodology to obtain the cascade of boosted
classifiers CAda = {C1;C2; ...;CM}, where M is the number of stages in the
cascade. The inputs of the algorithm are the positive dataset BP, and two
parameter that will control the learning process at each stage: dmin, which is
the minimum percentage of detections on the validation dataset, and fmax which
is the maximum percentage of false alarms accepted for the stage. The dmin

is usually chosen very high: 99% or more. In the iterative method, the strong
classifier learning algorithm 1 returns a classifier Gk. The starting threshold
value to validate the samples is zero1. While it is not reached dmin on the
validation dataset, the threshold is decremented. This operation affects directly
the false alarms rate of the stage: decreasing TH , the more false alarms will be
validated by Gk(x). Once reached dmin, the false alarms ratio is calculated on
the negative dataset. If this value exceeds fmax, a new strong classifier Gk(x)
is trained incrementing the number of weak functions n. When both conditions

1It would be the case of classifying an entry by the sign returned by G(x): G(x) =

sgn(
∑

T

t=1
gt(x))

32

are reached, or when the number of g exceeds a maximum number, the classifier
Ck is incorporated to the cascade.

For the next iteration, a new negative dataset is collected from images with-
out pedestrians, being the false alarms of the new CAda.

The criteria to stop the algorithm can be one of the followings:

• It was reached an overall false alarms ratio, e.g. Ftarget = 10−7,

• The cascade is composed by a maximum number of stages in the cascade,

• If the number of false alarms founded to train the next stage is less than
a minimum number of samples.

Algorithm 2 Cascade of boosted classifiers

Require: fmax, dmin

Ensure: Set of positive samples PB,
Set of negative samples NB,
F0 = 1.0,
i = 0,CAda ← empty,

1: while StopCriteria(i)=FALSE do

2: i = i+ 1,
3: ni = 0;Fi = Fi−1,
4: while f > fmax do

5: ni = ni + 1,
6: Ci = ADATRAIN(PB,N,ni)
7: Set threshold THi = 0,
8: Evaluate Ci on validation set to get positive rate d,
9: Decrease THi until Ci has detection rate of at least dmin

10: Obtain false alarms ratio f in NB,
11: N ← 0,
12: CAda = {CAda;Ci}
13: Use CAda to get a set of negative samples NB,
14: Fi = f × Fi−1

15: return CAda

Appendix B. MFS fast calculation

In order to reduce the processing time, we propose a methodology to calcu-
late an approximation of the oriented level lines. We rely on the local result of
the calculation of the level lines, and the values of the neighbors. The level line
which passes through a pixel will be generated by the greater transition between
him and one of the 4 neighbors. This operation is done by the convolution of
the image with four derivative filters.

33

fd1 =
[

−1 1
]

fd2 =

[

−1
1

]

fd3 =

[

−1 1
1 −1

]

fd2 =

[

1 −1
−1 1

]

Let be I a one channel input image, four matrix are obtained convolving I
with filters fdi:

Ci(x) = |I(x) ∗ fdi|i=1,...,4

The approximated value of S(x) at each pixel x is founded choosing the
largest value among the convolved matrix Ci(x):

Sa(x) = Cm(x)m=argmax{Ci(x),i=1,...,4}

The values of O(x) arise from the orientations of the gradient calculated in
I with a Sobel filtering.

To retrieve the relevant values of Sa, we kept those pixels x with a value
exceeding the threshold γ, which is calculated as:

γ =
δ(max(I)−min(I))

N

wheremax(I) andmin(I) are the maximum and minimum values, in gray levels,
of the image I. The parameters N and δ are those introduced in section 2.1.

34

