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Abstract. The high volatility of the agricultural and energy commodity
prices in the international market is a concern due to their transmission
to regional prices, increasing instability in domestic markets. This paper
evaluates the performance of recurrent networks (RNN and LSTM) to
predict regional prices reactions under international shock simulations.
Experiments are run to soybean and corn regional prices in Argentine
by considering exogenous changes of the international oil price - both
agricultural commodities are inputs for biofuels’ production - and also of
their international prices. Results are in line with the econometric liter-
ature and consistent with the dynamic of regional prices in Argentina’s
markets. Thus, the RNNs could be a useful tool for timely economic
policy decisions that cushion external price shocks in domestic markets.

Keywords: Recurrent Neural Networks · Regional Commodities Prices
· Shock Simulations.

1 Introduction

The definition of new trade policy instruments for monitoring and stabilizing
agricultural commodities prices at borders must meet specific domestic socio-
economic objectives. Thus, it is essential to understand how changes in interna-
tional and internal prices propagate geographically within a country. Without an
accurate measurement of these effects, any quantitative analysis would be flawed,
and the calibration of contingency measures distorted. For example, assuming
perfect price transmission would be a risky simplification and would lead to an
overestimation of the corrective power of trade policy instruments (e.g. export
duties or subsidies).

The literature on price volatility focuses mainly on the cases of large exporters
(e.g. United States) and more recently on the case of countries with a high food
dependence on agricultural imports (e.g. Sub-Saharan African countries). The
related economic and econometric literature evidences the inter-dependencies
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between the different agricultural products [14,8,13,12], and between agricultural
and energy markets [15,8], explaining the dynamics of price volatility between
markets. Most of these works use GARCH or MGARCH models [15,8] to assess
agricultural price volatility as a function of its history. The first one captures the
effects on short-term but also long-term price volatility between markets, and
the second analyzes the interdependence between them (e.g. spillover effects).

While econometric methods of Vector Auto-regressive (VAR) models remain
as the benchmark for price forecast, many research works are pointing to neural
networks as a more precise method. Wang et al. [17] use a Back Propagation
Neural Network (BPNN) to predict prices of agricultural commodities such as
wheat, soy, or corn, and conclude that their predictions are more accurate than
an econometric method used for comparison. Fang et al. [7] arrive at similar
conclusions using a traditional Neural Network (NN).

Most of the existing research uses NN static models to predict future prices;
however, they only use the state of the network in one period to predict values for
the next, losing all memory of the network for the next step [11]. For time series,
where each value is related to previous and next values, using static models
does not properly capture the dynamics. This is particularly true for series with
sudden movements or ”shocks” , where predictions for static models tend to
detach rapidly from real values. Conversely, a dynamic model could accurately
learn from shocks and consider their information for prediction.

Recurrent Neural Networks (RNN) are a potential accurate prediction model
for agricultural prices. RNNs are Neural Networks that link actual variables on
their prior states, giving them a ”dynamic memory” [6]. This is extremely useful
to predict within a time series, where each element fed to the model is related to
the previous and next values. Wang [20] uses an Echo State RNN to predict stock
prices from the S&P 500, while Boyko et al. [4] use Long-Short Term Memory
(LSTM), to predict upon the same database. Both papers arrive at satisfying
conclusions. Moreover, Wang and Wang [18] use an Elman RNN, similar to the
one used in our experiments, with a successful prediction to estimate future oil
price. It is worth noting that data harmonization before applying any Machine
or Deep Learning method can improve these RNN performance [19,7,17]. Fur-
thermore, this RNN literature makes predictions based only on one single input
(i.e., time lags of the same price). Nevertheless, a dynamic network could learn
and forecast based also on other elements (e.g., international oil price) strongly
related to the variable target.

This work implements RNN and LSTM architectures to simulate the dy-
namics of a closed system of prices (i.e., international prices of oil, soybean, and
corn and Argentina’s regional -Bahia Blanca, Rosario and Quequen - prices the
same agricultural products). We focus on the training and evaluation of these
models to estimate inter-dependencies between the inputs, and predict the dy-
namics of the regional prices. In our experiments, each international commodity
is stressed under a strong shock (i.e. international price of oil), and the evolu-
tion of the regional prices on each recurrent model is evaluated as a self-driven
dynamic. Recurrent models’ results show good performance compared to econo-
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metric analysis, validating the use of the RNN and LSTM as a realistic engine
for this application.

The paper is organized as follows. The next section states the problem, de-
picts the recurrent models, and details the training procedure. Experiments and
analysis are detailed in section 3. Section 4 concludes the paper and propose
future works.

2 Commodities Prices Prediction Models

2.1 Problem Formulation

The prediction models will work with temporal sequences corresponding to com-
modities prices. We define three kinds of series:

– e(t) an exogenous price sequence dependent to i(t).
– i(t) a price sequence that it is related with e(t).
– r(t) a price sequence dependent to i(t) and e(t).

were (t) indicates the value of the price at time t. In our experiments, e(t)

is the international price of oil. The sequences i(t) are international prices of
agricultural commodities associated with bio-diesel (soybean) and bio-ethanol
(corn). Because these bio-fuels (partially) replace gasoline, we can state that
e(t) and i(t) are interdependent variables. Finally, r(t) corresponds to agricultural
commodities prices in different regions of Argentina. The dynamic of these prices
involves local factors, and (what we expect to prove) external ones such as the
i(t) sequences.

The model, which simulates the behavior of the closed price system, could
capture variables’ inter-dependencies from the data at the learning process. This
dynamic can be evaluated using shocks. A shock is an abrupt change in the price
of one of the products in the system that could affect other products’ prices. For
instance, we are interested in evaluating prices’ inter-dependence when applying
an oil price shock. This kind of behavior happens in real life, due to political
changes, wars, pandemics, and more lastly, environmental concerns.

We choose the RNN model to learn the dynamics of the closed system and
predict the stationary values after the shock. Static models could not produce
this kind of results as it is needed a system that receives as inputs their precedent
outputs. The next section introduces the RNN models.

2.2 Recurrent Neural Network Architecture

Temporal series denoted as (x(1),x(2), ...,x(T )) are usually the inputs of RNN
models. In our case, x(t) is a vector containing the commodity prices at week
t including prices data from the three series (e(t), i(t), r(t)). Equivalently, the
target sequences corresponding to the expected commodity prices is stated as
(y(1),y(2), ...,y(T )). The predictions produced by the recurrent model are de-
noted as ŷ(t).
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Fig. 1. System architecture and evolution.

The forward pass of a simple recurrent network model [11] introduces h(t),
the hidden state of the network at time t and is defined by two equations:

h(t) = σ(Whxx(t) +Whhh(t−1) + bh) (1)

ŷ(t) = σ(W yhh(t) + by) (2)

Eq. 1 obtains h(t) as the combination of the input x(t) at time t and h(t−1),
which corresponds to the hidden previous state. These recurrent connections
are what give the model memory [6]. We express the estimation of target y of
equations 1 and 2 at time t as a dependent function R with internal parameters
{Whx,Whh,W yh, bh}:

ŷ(t) = R(x(t)|h = h(t−1)) (3)

Modern RNN architectures introduce several improvements overcoming tra-
ditional training problems. Long-Short Term Memory model [9] (LSTM) is one
of the most successful networks widely employed on several applications, such
as natural language processing. LSTM deals with long-term dependencies incor-
porating gates to the recurrent cell.

This work implements recurrent neural networks with both RNN-Elman and
LSTM cells with a forget gate. Also, we’ll deploy a stacked RNN and LSTM
network [21]. In practice, an easy way to increase the depth of the recurrent
network is to stack the cells into L layers. This architecture has proved to improve
efficiency and performance in problems like vehicle-to-vehicle communication [5]
and French-English translation [16].

2.3 Training Procedure

The training follows a mini-sequences batch procedure. We split the training
sequence into mini-sequences of τ length (x(t), ...,x(t+τ−1)), referred as X(t,τ).
The target Y(t,β) is also a sequence that consists of the price values of interest
from τ to β: (x(t+τ), ...,x(t+τ+β−1)). They are the ”future” prices that the model
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should predict in a self-driven way. More precisely, the inputs always correspond
to all the agricultural prices x(t) = (e(t), i(t), r(t)), while outputs are subject to
which variable receives the exogenous shock. For example, if the shock is applied
on the international oil price, the output becomes y(t) = (i(t), r(t)). If another
variable is selected to be shocked, it should be excluded from the target. The
τ inputs feed the RNN model, updating the internal hidden states. This step
can be thought as a warm-up of the internal variables from a (always the same)
initial value. Then, for the next β time steps, equation 3 is modified by:

ŷ(t) = R(ŷ(t−1)|h = h(t−1)) (4)

this outputs are then reserved as sequence target Ŷ(t,β) = (ŷ(t+τ), ..., ŷ(t+τ+β−1)).

The loss function is defined as a mean squared error on the output sequence Ŷ:

L =
∑
β

1

β
||Ŷ −Y|| (5)

3 Experiments

3.1 Data

Fig. 2. International and Regional Commodities Prices data series from 2005 to 2019.

We have built a database of weekly prices in US dollars between January
2005 and August 2019, leading to a sample of 772 observations for each price.

Prices considered in the database are: Soybean and corn prices per ton in
three regional markets in Argentina (Bahia Blanca - BB, Rosario - Ros, Quequén,
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QQ, the latter only for soybean) from GRANAR[2]; Soybean and corn interna-
tional prices per ton from FAOSTAT[1]; Oil international price per barrel from
the Western Texas Intermediate, WTI.

Before testing the RNN models, we have analysed the data in order to evalu-
ate the presence of a stable long-term relationship between regional, international
prices of each agricultural commodity and the international price of oil. We fol-
low the Johansen’s approach [10] for an appropriate cointegration analysis, so we
evaluate multivariate stationarity of price variables in each system (i.e., each sys-
tem is composed of regional and international prices of one of the agricultural
commodities and the international oil price)[10,3]. Soybean markets (regional
and international) and international oil market are integrated, being the Vector
Error Correction (VEC) model most appropriate for the regional soybean price
estimation. Cointegration between corn prices (regional and international) and
oil is not verified, being regional corn prices estimated through a VAR model.
Impulse-Response functions have been run in both regional price systems by
shocking (own commodity and oil) international prices to know the convergence
path for regional prices. These econometric estimations provide a reference for
regional price behaviors under the recurrent network architectures.

3.2 Hyperparameters selection

Four recurrent architectures are implemented: RNN-1c, RNN-2c, LSTM-1c and
LSTM-2c. Two of them consist of a single RNN and an LSTM cell. The hidden
states h for RNN and (h, c) for LSTM, have H hidden units. The other archi-
tectures stack a second recurrent cell to the network with the same number of
hidden units H.

We run a K-fold cross validation training, with K = 5, using the following set
of values for H = [4, 8, 12, 16, 20, 24, 28, 32]. Moreover, the training is controlled
by τ (warm-up) and β (self-driven) variables. Thus, the set of values for each
variable are τ = [6, 7, 8, 9, 10] and β = [1, 2, 3, 4]. Note that β = 1 corresponds
to a classical single prediction of the t+ 1 output value, while β > 1 applies the
loss function of eq. 5 to a sequence of targets.

Each K-fold is evaluated by two means squared error indices on the target
prices of the validation split: a MSE(t+1) prediction, and a MSE(t+N) predic-
tion. Let be x(t) the model input, MSE(t+1) is computed by the mean squared
error between ŷ(t) and x(t+1). MSE(t+N) is obtained by using eq. 4 for a self-
driven estimation for N steps. Then, the error is computed between prediction
ŷ(t+N−1) and x(t+N), and measures how well the recurrent model adjusts the
self-driven dynamic after N steps to the real values. In this work, we fix N = 4
which means a month of self-driven evolution. We employ an SGD optimizer
with an initial learning rate of 1e − 2. After 20 epochs, the learning rate is re-
duced by half. Table 1 shows the best results of each architecture sorted by the
MSE(t+N) index. As can be seen, recurrent cells with a high number of hidden
units H get the lowest errors. In the case of τ , warm-up phase seems more im-
portant for RNN cells. LSTM cells incorporate additional gates, then, this is a
normal conclusion. This is expected for models like LSTM having several gates
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to remember/forget input data. Increasing τ also increases the temporal drift
of the system itself. In the case of β parameter, the best results for RNN are
obtained using values greater than one. On the other hand, LSTM prefers lower
values of β.

Fig. 3. System architecture and evolution.

Fig. 3 samples the t + 1 predictions of the four models on a portion of the
soybean times series prices from Rosario port. We can appreciate different be-
haviors for each model. RNN-1c model predicts the series values with a low error
but a rapid dynamic. RNN-2c, on the other hand, seems to have a sinusoidal
dynamic near the series values, but sometimes the error is high, which is con-
sistent with the high value of their MSE(t+1) index on table 1. LSTM-1c and
LSTM-2c predict accurately the average of the series values but have a very low
dynamic. This soothing effect is more remarkable on the LSTM-2c predictions.

Architecture H τ β MSE(t+1) MSE(t+N)

RNN-1c 32 10 2 0.159±0.093 0.195±0.156
RNN-2c 32 10 4 0.426±0.182 0.207±0.156

LSTM-1c 32 8 2 0.124±0.083 0.247±0.135
LSTM-2c 32 6 1 0.196±0.182 0.288±0.214

Table 1. Hyperparameters with the best results of the K-Fold Cross Validation.
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Fig. 4. Shock prediction results.

3.3 International shock simulation

The experiments seek to validate the self-driven evolution of the recurrent net-
works when a permanent exogenous change (an increase of 100 US$) is intro-
duced in each of international prices (own commodity and oil).

The tests are conducted as follows. For example, to test soybean exogenous
change shock, we train the four models with all the commodities prices as inputs
and a target that does not predict international soybean. Thus, we split the
data sequences into temporal frames of T = 35 weeks. The first τ = 20 weeks
are employed as warm-up, and at t = 20, the value of the international soybean
price is increased by 100 US$, keeping this value until the end of the test. At
this point, the system uses both the new value of the international soybean price
and the self-prediction of other prices as input.

For example, in Fig. 4, we depict in black line the international variable we
employ to perform the shock and in colors (red, blue, green) the evolution of
the regional prices. In solid lines, the picture draws the regional prices without
the shock, and the dashed lines depict the self-driven dynamic of the system.
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The chosen time-frames in Fig. 4 are in line with the regional prices behaviors
in the Impulse-Response function based on econometric models considered as
reference. It is worth mentioning that we need to train a different model each
time we change the international price to perform the shock.

According to the results in Fig. 4, when considering an exogenous increase of
the international oil price, soybean prices in regional markets of Argentina are
immediately impacted, but the reaction depends on the model considered, e.g.
the RNN-2c displays greater volatility. Nevertheless, the decreasing convergence
paths of all models (consistent with econometric estimations) lead to the same
new stationary state.

While the regional soybean prices in Argentina recover stability near to the
path without shock, the regional corn prices show greater volatility facing the
same exogenous shock. Except for the LSTM-2c, regional corn prices display a
great difficulty to recover the path without shock, and Bahia Blanca and Rosario
corn markets show different behaviors between them and across models. Their
different paths of convergence increase the price-gap between regions (supported
by the econometric estimations).

Finally, when assuming an exogenous increase in the international price of
their agricultural commodity, regional markets prices display greater positive
reactions (particularly for corn) and convergence towards higher values compared
to their values without shock. Regional soybean prices converge to a higher
price in the new stationary state, except under the LSTM-2c, which brings the
price back to the path without shock. Reactions of regional corn prices to their
international price increase are greater than in the case of soybean and tend to
converge close to the new level of the international price of corn.

The difference between the reactions of soybean and corn regional prices to
their own international prices is due to Argentina’s soybean and corn markets
particularities. These results are in line with the role of Argentina as a big
soybean producer in the international market, so it is considered as a price
maker. Conversely, in the international corn market Argentina is a relatively
small player being a price-taker, so a change in the international price of corn is
strongly transmitted to regional prices.

4 Conclusions

In this paper, we have trained four recurrent networks to forecast the reaction
of regional commodity prices when an exogenous variable (i.e., an international
price) is shocked. Results have been validated since they are in line with esti-
mations from econometric auto-regressive models. The self-driven dynamic of
recurrent networks has been demonstrated to be consistent with the behavior of
Argentina’s soybean and corn markets. To reduce regional price volatility, RNNs
become a new tool to predict domestic prices’ reactions to international changes
and provide relevant insights for policy-makers decisions.

Further works should consider more complex recurrent networks, including
other variables related to these agricultural and energy prices (e.g., bio-ethanol
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and bio-diesel prices) and also other regional variables that condition regional
price path-through (e.g., transport costs).
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