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Abstract. This paper presents a framework for multiclass vehicle type
(Make and Model) identification based on oriented contour points. A
method to construct a model from several frontal vehicle images is pre-
sented. Employing this model, three voting algorithms and a distance
error allows to measure the similarity between an input instance and the
data bases classes. These scores could be combined to design a discrimi-
nant function. We present too a second classification stage that employ
scores like vectors. A nearest-neighbor algorithm is used to determine the
vehicle type. This method have been tested on a realistic data set (830
images containing 50 different vehicle classes) obtaining similar results
for equivalent recognition frameworks with different features selections
[10]. The system also shows to be robust to partial occlusions.

1 Introduction

Many vision based Intelligent Transport Systems are dedicated to detect, track
or recognize vehicles in image sequences. Three main applications can be dis-
tinguished. Firstly, embedded cameras allow to detect obstacles and to compute
distances from the equiped vehicle [13]. Secondly, road monitoring measures traf-
fic flow [1], notifies the health services in case of an accident or informes the police
in case of a driving fault. Finally, Vehicle based access control systems for build-
ings or outdoor sites have to authentify incoming (or outcoming) cars [10]. The
first application has to classify region-of-interest (ROI) in two classes: vehicles
or background. Vehicles are localized in an image with 2D or 3D bounding box
[13, 9]. The second one can use geometric models in addition to classify vehicles
in some categories such sedans, minivans or SUV. These 2D or 3D geometric
models are defined by deformable or parametric vehicle templates [6, 4, 5].

Rather than these two systems, the third one uses often only the recognition
of a small part of vehicle : the license plate. It is enough to identify a vehicle,
but in practice the vision based number plate recognition system can provide
a wrong information, due to a poor image quality or a fake plate. Combining
such systems with others process dedicated to identify vehicle type (brand and
model) the authentication can be increased in robustness (see fig. 1). This paper
adresses the identification problem of a vehicle type from a vehicle greyscale

CHANTAL IANNARELLI
Zone de texte 
P22



frontal image: the input of the system is an unknown vehicle class, that the
system has to determine from a data base.

Fig. 1. The fusion system.

Few papers deal with a similar problem. In a recognition framework for rigid
object recognition, Petrovic and Cootes [10] tested various features for vehicle
type classification. Their decision module is based on two distance measures
(with or without Principal Component Analysis pre-stage): the dot product
d = 1 − f1f2 and the Euclidean measure d = |f1 − f2|, where fi is the feature
vectors. The dot product gives slighthly outperforming results. Best results are
obtained with gradients based representations. These results can be explained
because the vehicle rigid structure is standardized by the manufacturer for each
model. The relevant information contained in contour edge and orientation is
independent of the vehicle color. Daniel T.Munroe et al [12] studied machine
learning classification techniques applied on features vectors (extracted with a
Canny edge detector). L. Dlagnekov [2] used Scale Invariant Feature Transforms
(SIFT) to compute and match keypoints. Zafar et al. [16] used a similar algo-
rithm. David A. Torres[14] extended the work of Dlagnekov by replacing the
SIFT features with features which characterize contour lines. In [8], Kazemi
et al investigated use of Fast Fourier Transforms, Discrete Wavelet Transforms
and Discrete Curvelet Transforms based image features. All these works used
gradient or contour based features.

In this paper, a multiclass recognition system is developed using the oriented-
contour pixels to represent each vehicle class. The system analyses a vehicle
frontal view identifying the instance as the most similar model class in the data
base. The classification is based on a voting process and a Euclidean edge dis-
tance. The algorithm have to deal with partial occlusions. Tollgates hide a part
of the vehicle (see fig. 2) and making inadequate the appearance-based methods.
In spite of tollgate presence, our system doesn’t have to change the training base
or apply time-consuming reconstruction process.



Fig. 2. Real vehicle images with the tollgate presence.

In section 2, we explain how we define a model for every class in the data base
using the oriented-contour points. Section 3 employs this model to obtain scores
measuring the similarity between the input instance and the data bases classes.
These scores could be combined to design a discriminant function. We present too
a second classification stage that employ scores like vectors. A nearest-neighbor
algorithm is used to classify the vehicle type. Results of our system are presented
in the section 4. We finish with conclusions and perspectives.

2 Model Creation

During the initial phase of our algorithm, we produce a model for all the K
vehicle types classes composing the system knowledge. The list of classes the
system is capable to recognize is called Knowledge Base (KnB). In our system,
the Knowledge Base will be the 50 vehicle type classes.

2.1 Images Databases

All ours experiments have been carried out on the Training Base (TrB) and
on the Test Base (TsB). The TrB samples (291 images) are used to produce
the oriented-contour point models of the vehicle classes. While the TsB samples
(830 images) are utilized to evaluate the performance of the classification system.
In figure 3, the upper row shows samples from TrB and in the bottom row, the
figure shows the corresponding vehicle type class of the TsB. These databases
are composed of frontal vehicle views, captured in different car parks, under
different light conditions and different points of view.

2.2 Prototype image

We create a canonical rear-viewed vehicle image I from the four corner points
of the license plate {A,B,C,D} (see fig. 4). The image templates are called pro-
totypes and in the present work are 600 * 252 pixels (rows * columns). A ROI



Fig. 3. In the upper row, the figure shows samples from TrB. In the bottom row, the
figure shows the corresponding vehicle type class of the TsB.

defined by the points {A,B,C,D} is independent of the vehicle location in the
image and the scale (fig.4.a). In order to correct the orientation of the origi-
nal image (see example in fig.3), an affine transformation moves original points
{A,B,C,D} to the desired {A’,B’,C’,D’} reference position, considering the ve-
hicle grille and the license plate in the same plane. A license plate recognition
system provides the corners of the vehicle license plate.

(a) (b)

Fig. 4. (a) original image, (b) prototype I.

The Sobel operator is used to compute the gradient’s magnitude and ori-
entation of the greyscale prototype I (|∇gI |, φI). An oriented-contours points
matrix EI is obtained using an histogram based threshold process. Each edge
point pi of EI is considered as a vector in <3: pi=[x,y,o]’, where (x,y) is the
point position, and o is the gradient orientation of pi [?]. We sample the gradient
orientations to N bins. To manage the cases of vehicles of the same type but
with different colors, the modulus π is used instead of the modulus 2π [?]. In
the present application, N = 4.

2.3 Model Features

Oriented-Contour points features array Each class in the KnB is repre-
sented by n prototypes in the TrB. This quantity n varies from class to class,
having some defined with one prototype only.

Superposing the n prototypes of the class k, we find an array of the redundant
oriented-contour points. This feature array of Oriented-Contour based points



models this class in the KnB. The algorithm operates the n prototypes of the
class k in the TrB by couples (having Cn,2 couples at all). Let be (Ei,Ej) a

Fig. 5. Model creation.

couple of Oriented-Contour Points matrix of the prototypes 1 and 2 from the k
class. We define an 600x252xN accumulator matrix Aij and the vote process is
as follow: a) taking a point pi of Ei, we seek in Ej the nearest point pj with
the same gradient orientation; b) the algorithm increments the accumulator Aij

in the middle point of pipj at the same gradient orientation; c) the procedure is
repeated for all the points pi of Ei. Considering the addition of all Aij we obtain
the accumulator array Ak: Ak =

∑
i,j Aij . The most voted points am=[x,y,o] of

Ak are selected iteratively. We impose a distance of 5 pixels between the am in
order to obtain a homogeneous distribution of the model points. We store am in
a feature array Mk. The array Mk contains the Oriented-Contour Points that
are rather stable through the n samples of the class k.

When n = 1, the accumulator matrix Ak cannot be computed: the feature ar-
ray Mk is then determined from the maximum values of the gradient magnitude
|∇gI |.

Weighted Matrix The Chamfer distance is applied to determine the distance
from every picture element to the given Mk set (fig. 6). This figure shows the
four Rk

i Chamfer region matrix (one for each gradient orientation) obtained after
threshold the Chamfer chart matrix Dk

i with the distances smaller than r.
Two weighted regions arrays W k

+ and W k
− will be created for each class k.

W k
+ is based on the Rk region matrix where each pixel point has a weight related

to the discrimination power of the corresponding oriented-contour points. Pixel
points rarely present in the others classes obtain highest weights. We give lowest
weights to the points present in the majority of the Knowledge Base classes.

W k
+ =

1
K − 1

∑
i,i6=k

(Rk −Ri ∩Rk)

W k
− gives a negative weight to the points of the other models which are not

present in the matrix Rk of the model k. Pixel points that are present in most
of the other classes obtain highest weight values. In the other hand, pixel points
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Fig. 6. Obtaining Chamfer region matrix.

present in few classes get lowest weight values.

W k
− = − 1

K − 1

∑
i,i6=k

(Ri −Ri ∩Rk)

The K classes in the KnB are modelled by {M1, ...,MK}, where eachMk =
{Mk,W k

+,W
k
−}.

3 Classification

This section develops the methods to classify the samples providing from the
T ∫B using the models Mk. A new instance t is evaluated on the classification
function G(t) = ArgMax{g1(t), ..., gK(t)} using the winner-take-all rule. The
example t is labelled by k ∈ K from the highest score of the gk. Two types
of matching scores compose the gk (see fig. 7). The first obtains a score based
on three kind of votes (positive, negative and class votes) for each class k. The
second score evaluates the distance between the oriented-contour points of the
model Mk to the oriented-contour points of t.

Obtaining the image prototype of the sample t from the Test Base, we calcu-
late the oriented-contour points matrix Et (section 2.2). Considering the large
number of points in Et, we have to choose a limited set of T points. The value
of T is a compromise between the computing time and a good rate of correct
classifications (in our algorithm, T = 3500). To select these points, we construct
a sorted list of the prototype positions (x, y, o). We sort in decreasing order, the
values of the weighted arrays W i

+ i = 1, ...,K, placing the discriminant pixels
(highest values) in the firsts positions of the list. Looking iteratively if the pixels
in the list are present in Et, we pick up the T points, and place them in Pt.



3.1 Designing the discriminant function

Fig. 7. Obtaining the discriminant function.

Positive votes The methodology consists in accumulating votes for the class
k, whenever a point of Pt falls in a neighbourhood of a Mk point. We define
the neighbourhood of the point Mk as a circle of radius r around the point of
interest. This neighbourhood representation is modelled in the Chamfer regions
Rk

i . Moreover, each point of Pt votes for the class k with a different weight
depending on its value in the matrix W k

+.
The nonzero points of the dot product of Pt and W k

+ correspond to the
points of Pt, that belong to a neighbourhood of the Mk’s points. Thereafter, we
calculate the amount of positive votes in equation 1 where [•] is the dot product.

vk
+ =

∑
x

∑
y

∑
o

Pt • W k
+ (1)

Negative votes The negative votes take into account the points of Pt that
did not fall into the neighbourhood of the Mk points. We punish the class k by
accumulating these points weighted by the matrix W k

−. The amount of negative
votes is defined as:

vk
− =

∑
x

∑
y

∑
o

Pt • W k
−

Votes to test We calculate the votes from the models to the sample test. In
short, the method is the same as the one detailed in the preceding section. We
first build the chart of Chamfer Distances for Et. We keep the regions around
the oriented-contour points of Et which are at a distance lower than r pixels



in the matrix Rt. Then, randomly selecting T points from the array Mk, we
obtain a representation of this set in an array Pk. Each point of the matrix Pk

is weighted by the matrix W k
+. Total votes from the class k to the sample test t

are calculated as:
vt
+ =

∑
x

∑
y

∑
o

Rt •Pk • W k
+

Distance Error The last score is the error measure of matching the Pt points
with their nearest point in Mk. Calculating the average of all the minimal dis-
tances, we obtain the error distance dk [3] :

H(Pt,Mk) = max(h(Pt,Mk), h(Mk,Pt))

with :
h(Pt,Mk) = meana∈Pt

(minb∈Mk
‖a− b‖))

Furthermore, values in the error vector have to be processed by a decreasing
function considering that in the vote vectors we search for the maximum and for
the error vector we search for the minimum.

3.2 Classification Strategies

We have developed two strategies for classification. The first combines the scores
in a discriminant function. The second creates voting vector spaces from the
scores : the decision is based on a nearest-neighbor process.

First Strategy : Discriminant Function The four matching scores {vk
+, v

k
−,

vt
+, d

k} are combined in a discriminant function gk(t) matching the sample test
t to the class k. A pseudo-distance of Mahalanobis normalizes the scores: v̄ =
(v − µ)/σ, where (µ, σ) are the mean and the standard deviation of v. The
discriminant function is defined as a fusion of scores:

gk(t) = α1 v̄
k
+ + α2 v̄

k
− + α3 v̄

k
+ + α4 d̄

k (2)

The αi are coefficients which weight each classifier. In our system, we give the
same value for all αi.

Finally, given the test sample t, its class label k is determined from:

k = G(t) = ArgMax{g1(t), ...gK(t)}

Second Strategy : Voting Spaces We construct vector spaces with the results
from the voting process. We define:

– v(t) =
[
vmh
+k , v

mh
−k , v

mh
+t , d

mh
k

]
k=1..K

as a vector in a 200(=4 ∗ K) dimension
space, called Ωwf (wf = without fusion).



– vPCAX(t) =
[
vmh
+k , v

mh
−k , v

mh
+t , d

mh
k

]PCAX

k=1..K
as a vector in a X dimension space,

called ΩPCAX
wf , (with a Principal Component Analysis pre-stage ).

– g(t) = [gk(t)]k=1..K as a vector in a 50 (=K) dimension space, called Ωf

(f = with fusion).

In these spaces, given the test sample t, its class label is determined as the
nearest-neighbor class. It needs reference samples. We use a cross-validation
process : the test database is decomposed in two equal parts. The first is used
as references. The second is used for the test.

4 Results

With the first strategy, the system correctly identifies 80,2% of 830 test samples.
The mean of the recognition rates per class is 69,4%.

Fig. 8. CMC curves in the Ωwf space (solid line) and in the Ωf space (dashed line).

The second strategy obtains better results (in mean, with 100 randomly
different repartitions):

– in the first space, Ωwf , we obtain 93,1% for the correctly identification rate
(83,5% for the mean of the recognition rates per class).

– in a second space, ΩPCA50
wf , we obtain 86,2% for the correctly identification

rate (78,8% for the mean of the recognition rates per class).



– in the last space Ωf , we obtain 90,6% for the correctly identification rate
(86,4% for the mean of the recognition rates per class).

Fig. 9. Recognition rates related to the
X dimension in the ΩPCAX

wf .

Fig. 10. Recognition rates related to the
samples proportion used as reference, in
Ωf .

The figure 8 shows the Cumulative Match Characteristic curves (CMC1). We
clearly see that the second strategy in the first space (without fusion and without
PCA) gives better results, but with a higher computational cost (due to a high
dimensional space). The figure 9 shows us that, without fusion, we have to keep a
space dimension higher than 100. Furthermore, a better algorithm performance
could be obtained by choosing optimized values for the αi in the equation22.
Moreover, the recognition rate depends on the used reference samples proportion
(see figure 10).

Another test simulates the presence of a tollgate at four different locations;
in a car park access control system it is difficult to define the relative vertical
position between the barrier and the vehicle even if the license plate is always
visible. The results for each tollgate position are showed in figure 11. The better
recognition are obtained if the virtual tollgate hides the upper part of the images:
a lot of noise points are extracted from this part (see figure 13). These points
perturb the recognition system. They are filtered if the number of images used
in the model creation is sufficient (> 5) as we can see in the figure 12.

1 A Cumulative Match Characteristic (CMC) curve plots the probability of identifi-
cation against the returned 1:N candidate list size. It shows the probability that a
given user appears in different sized candidate lists. The faster the CMC curve ap-
proaches 1, indicating that the user always appears in the candidate list of specified
size, the better the matching algorithm.

2 A training algorithm method could be used, but we have to capture more frontal
view vehicle samples.



Virtual tollgate position First Stategy Ωwf space ΩPCA50
wf space Ωf space

1 84,0 % 87,3 % 87,1 % 89,0 %
2 78,5 % 84,5 % 84,1 % 85,6 %
3 78,6 % 84,5 % 83,8 % 85,3 %
4 80,2 % 87,5 % 85,9 % 87,4 %

Fig. 11. the four positions of a virtual tollgate and the recognition rates.

Fig. 12. Mean of the recognition rates par class, re-
lated to the images number used in the model cre-
ation.

Fig. 13. Results of the con-
tour extraction process.

5 Conclusions

This article has presented a voting system for the multiclass vehicle type recogni-
tion based on Oriented-Contour Points Set. Each vehicle class is composed from
one or many grayscale frontal images of one vehicle type (make and model).
A discriminant function combines the scores provided from three voting based
classifiers and an error distance. A second strategy consists in considering the
scores as elements of a vector. A nearest-neighbor process is used to determine
the vehicle type. We have tested this method on a realistic data sets of 830
frontal images of cars. The results showed that the method is robust to a partial
occlusion of the patterns. The second strategy obtains better results, particu-
larly if the fusion scores are used. Our recognition rate is over 90%. Without
occlusion, our system obtains similar results as others works [10]. Future works
will be oriented to reduce the influence of the images number used in the model
creation process : it could be interesting to recognize the type of a vehicle with
only one reference image per class.
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